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Abstract

Modifying the standard New-Keynesian model to replace firms’ full information and sticky
prices with flexible prices and dispersed information, and imposing mild and plausible restric-
tions on the monetary authority’s decision rule, produces the striking results that (i) there exists
a unique and globally stable steady-state rate of inflation, despite the possibility of a lower bound
on nominal interest rates; and (ii) in the vicinity of steady-state, the price level is determinate
(and not just the rate of inflation), despite the central bank targeting inflation. The specification
of firms’ signal extraction problem under dispersed information removes the need to make use
of Blanchard-Kahn conditions to solve the model, thereby removing the need to adhere to the
Taylor principle and consequently circumventing the critique of Cochrane (2011). The model
admits a determinate, stable solution with no role for sunspot shocks when the monetary au-
thority responds by less than one-for-one to changes in expected inflation, including under an
interest rate peg. An extension to include incomplete information on the part of the central
bank permits the consideration of (rational) errors of judgement on the part of policymakers
and provides a theoretical basis for inertial policymaking without interest rate smoothing, in
support of Rudebusch (2002, 2006).
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1 Introduction

This paper reexamines the topics of determinacy and the nominal anchor within New Keynesian
models, demonstrating a model with dispersed information in which (i) the steady-state equilibrium
is unique (as an arbitrary choice of the monetary authority) and globally stable, despite the potential
for a lower bound on the nominal interest rate; and (ii) when out of steady-state the price level,
and not just the rate of inflation, is determinate, despite the monetary authority being an inflation
targetter. The overall price level of the economy is therefore determined, up to an initial value.

The model features price-setting firms having incomplete and heterogenous information regard-
ing the state of the economy. The consequent need to specify and solve their signal extraction
problem allows the model to be solved without the use of Blanchard and Kahn (1980), thereby
circumventing the critique of Cochrane (2011) and removing the need for the monetary authority to
adhere to the Taylor principle. The economy retains nominal stability despite the coefficient against
(next-period) inflation in the monetary authority’s decision rule taking values less than one, or even
under an interest rate peg. Put another way, beyond the successful establishment and publication of
the steady state rate of inflation, central banks do not need to act in order to stabilise the economy.

Of course, the primary competitor framework for thinking about the nominal stability of an
economy is the Fiscal Theory of the Price Level (FTPL), developed by Leeper (1991), Sims (1994)
and Woodford (1994, 1995), in which an ‘active’ fiscal authority may impose the price level on a
‘passive’ monetary authority in order to balance the present, discounted value of current and future
budgets of the consolidated government. I do not comment on this literature here. Instead, this
paper adopts the standard New Keynesian approach of supposing Ricardian equivalence and the
use of lump sum taxes, so that fiscal policy remains passive and the provision of a nominal anchor
remains entirely the responsibility of the monetary authority.

An extension of the main model to also incorporate incomplete information on the part of the
central bank allows two further contributions. First, it represents a theoretical provision of inertial
monetary policymaking following any shock to the economy, including transitory shocks, and not
just persistent monetary shocks. It thereby adds weight to the argument of Rudebusch (2002,
2006), who contends that the inclusion of interest rate smoothing in estimates of of monetary policy
decision rules carries little structural justification and that observed inertia is instead attributable
to persistence in factors omitted from reduced-form estimates. Second, it allows the consideration
of policymakers’ errors of judgement by incorporating the possibility of (perfectly transitory) noise
shocks to the central bank’s signals.

1.1 Structure of the paper

To develop the paper, section 2 will first present a brief summary of the standard approach to
solving rational, forward-looking models under Blanchard-Kahn conditions and the critique of their
use under New Keynesian (indeed, all monetary) models by Cochrane (2011), which motivates this
paper’s use of dispersed information. Section 3 then presents the solution to a generalised model
of dispersed information that nests the foundational model of Woodford (2003a), and the various
works that have subsequently emerged,1 without a need to invoke Blanchard-Kahn (replacing it,
instead, with a specification of agents’ signal extraction problem).

1See, for example, Nimark (2008), Lorenzoni (2009), Angeletos and La’O (2009, 2010), Graham and Wright (2010),
Graham (2011a,b) and Melosi (2014).
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Section 4 next presents the main model of the paper: a New Keynesian model in which the
representative household and the monetary authority have full information, but firms have incom-
plete and heterogeneous information sets and the monetary authority is forward-looking. Section 5
then describes an extension to the baseline model by removing full information from the monetary
authority (but leaving it with the representative household), while section 6 concludes.

2 On the use of incomplete information as a solution technique
and the need for incomplete information in monetary models

2.1 The setting: How do we typically solve rational, forward-looking models?

Let zt be the aggregate endogenous state of the economy in period t and xt be a vector of mean zero
disturbances. Most macroeconomic models, once linearised, are presented in the following form:

zt = AEt [zt+1] +Bxt (1)

where A and B are matricies of parameters and Et [·] ≡ E [·|Ωt] is the mathematical expectation
conditional on all information available in period t. Such models are indeterminate (i.e. incomplete),
however: we cannot use equation (1) to determine the exact values zt will take for a given sequence
of exogenous shocks ({xt}) because the process by which expectations are formed has not been
specified.

It is not sufficient to assume rational expectations in the sense of Muth (1961) – that agents (i)
know the functional form and parameters of (1); and (ii) do not make systematic errors – as the
model then only becomes

zt = Azt+1 +Bxt −Aδz,t+1 with E [δz,t+1] = 0 (2)

where δz,t+1 ≡ zt+1 − Et [zt+1] is the one-step-ahead forecast error. Any mean-zero process for
δz,t+1 will represent a rational expectations equilibrium and it remains necessary to select between
them. Instead, the most common approach to closing such models is to impose saddle-path stability,
a process dating to, and most famously associated with, Blanchard and Kahn (1980). This process
involves the imposition of two key assumptions:

B-K assumption 1. A no-bubble constraint in expectation: lims→∞Et [Aszt+s] = 0 ∀t.

B-K assumption 2. Those eigenvalues of A−1 that relate to forward-looking variables lie outside
the unit circle, making the system explosive along those dimensions.

Under these final modelling choices, there remains only one solution: that δz,t+1 = 0 ∀t, condi-
tional on xt. Agents are thus granted (conditionally) perfect foresight and, following a shock, those
variables that are free to move will immediately jump to the system saddle path. Backward-looking
variables (endogenous states) will adjust slowly and each period the forward-looking variables will
“jump” to remain on the (equilibrium) saddle path until the steady-state is achieved. Other work
has since developed and improved the methodology for finding the implied solution, and expanded
the set of models to which this approach may be applied,2 but all of them retain the two defining
assumptions of Blanchard and Kahn (1980).

2See, in particular, Uhlig (1997), King and Watson (1998), Klein (2000) and Sims (2002).
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Note that the Blanchard-Kahn approach does not formally lay out the expectation formation
process; indeed it expressly declines to do so. Instead, it imposes conditions that any such process
must meet, and makes those conditions sufficiently restrictive as to permit only one outcome. How
agents actually arrive at that outcome technically remains unspecified (although the question at
that point becomes moot).

2.2 The problem: Blanchard-Kahn conditions do not make sense in monetary
models

The B-K approach has proven to be near ubiquitously popular in macroeconomics, to the extent that
their assumptions are commonly taken to be axiomatically true. When macroeconomists write “the
rational expectations equilibrium” (REE) they are, almost invariably, referring to the Blanchard-
Kahn-derived rational expectations equilibrium. It therefore bears emphasising that while the B-K
conditions will certainly pin down one solution, it is by no means the only solution and – more
importantly – there is no guarantee that it represents an economically sensible solution.

The New Keynesian model solved under Blanchard-Kahn conditions, in particular, has been
famously criticised by Cochrane (2009, 2011) as being implausible. Against B-K assumption 1,
he observes that while a transversality condition on real variables is reasonable, assuming one for
nominal variables is much less defensible – hyperinflations do happen! Against B-K assumption 2,
he further notes that the Taylor principle that emerges (in order to deliver the necessary eigenvalue)
amounts to an ex ante commitment to blow up the economy in the event of runaway inflation –
a commitment to produce even faster inflation – which cannot be credible, as policymakers would
retain ex post options to arrest high inflation without ruling out break-out inflation in the first
place.3

Cochrane’s logic is impeccable, but it is worth emphasising that his critique applies more broadly
as a criticism of the Blanchard-Kahn solution technique when applied to any monetary model (that
is, one in which nominal variables enter zt). It is not a criticism of monetary models in themselves,4

but is instead an objection to the suggestion that a monetary authority following some version of a
B-K-derived Taylor principle is sufficient to provide a nominal anchor to the economy.

2.3 Other equilibrium-selection criteria

A variety of authors have, both implicitly and explicitly, agreed with Cochrane’s critique of the
no-bubble condition (B-K assumption 1). For example, Bennett McCallum has noted in a number
of papers5 that if one purpose of a model is to determine the conditions under which a system
will be stable or unstable, then the solution technique for that model cannot logically feature an
axiomatic requirement that there be no bubbles. Much of the literature on equilibrium selection
has therefore sought to relax this assumption and still obtain the same REE, referring to it as the
“fundamental solution.” Key work in this field has included the Minimum State Variable approach

3Note that the eigenvalue condition is satisfied naturally under standard parameter choices for many real models,
such as the Neoclassical growth model, that feature no role for a policymaker. The concern here is with models that
do feature policymakers when the eigenvalue condition relies on a structural parameter that is a policy choice.

4Cochrane (2011) makes this point himself about the New Keynesian model in particular when he writes (p 570):
‘This paper is not a criticism of new-Keynesian economics in general. In particular, I do not have anything to say here
that criticizes its basic ingredients: an intertemporal, forward-looking “IS” curve or an intertemporally optimizing,
forward-looking model of price setting subject to frictions, as captured in the “new-Keynesian Phillips curve.”’

5See, for example, McCallum (1999), pages 8-9.
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of McCallum (1983, 1999) and the E-Stability criterion of Evans and Honkapohja (2001). More
recently, McCallum (2012a) has proposed a Continunity Refinement, in which he argues that a
plausible solution must be continuous in the vicinity of the coefficients against forward-looking
variables approaching zero.6

The plausibility of these approaches remains contested.7 But whatever their merits, all of these
approaches continue to maintain B-K assumption 2: that the system be explosive among forward-
looking variables. While this assumption may be valid in some (real) models, for models that feature
nominal aggregates, this amounts to an assumption about structural coefficients that are under the
control of the monetary authority. In other words, the very possibility of explosive solutions to (2)
– which the equilibrium-pruning literature seeks to rule out – is mathematically conditioned on an
assumption that the monetary authority knowingly pre-commits to bring about hyperinflation (or
hyperdeflation) if agents ever make a non-fundamental forecast error.

On the other hand, if B-K assumption 2 is not maintained (that is, if all eigenvalues of A−1

are held to be inside the unit circle), then equation (2) becomes inherently stable, but in a full
information setting the problem that Blanchard and Kahn set out to address remains: there are
an infinite number of possible solutions, indexed by the set of possible (mean zero) processes that
might determine forecast errors.

On the benefits of incomplete information (about the state)

An alternative approach is to embrace the idea of agents having only incomplete information regard-
ing the state of the economy. By removing the assumption of full information, it becomes necessary
to be explicit in specifying agents’ signal extraction problems, through which they learn about the
state that is hidden to them.8 The researcher therefore removes the problem of indeterminacy be-
cause the process for agents’ expectation errors (including forecast errors) becomes expressly pinned
down. There remain no multiple forecast errors for the researcher to “choose” between, so there
remains no requirement to appeal to the Blanchard-Kahn conditions. A monetary model with in-
complete information (or, more strictly, a fully-specified signal extraction process) is therefore able
to be robust to this aspect of Cochrane’s critique.

The specification of agents’ signal extraction process (that is, the specification of the signals
observed and the derivation of their optimal linear filter) also serves to eliminate any role for pure
sunspot shocks in the economy. By “sunspot shock”, I here mean any shock that is neither “funda-
mental” (appearing directly in agents’ decision rules) nor aggregate “noise” (such as measurement
error on the part of national statistical agencies), but nevertheless appears as a separate element in
agents’ signal vectors. Since sunspot shocks do not covary with other underlying shocks, the optimal
linear filter puts zero weight on them when producing agents’ first-order expectations. Since agents
are rational, they realise that the zero weight is common to everyone and that, consequently, sun-

6The extension of the Forward Method to multivariate systems with predetermined variables by Cho and Moreno
(2011) also bears mentioning as a recent development in the field of equilibrium selection, although they explicitly
maintain the no-bubble condition.

7For example, Cochrane (2009) suggests that Least Squares Learnability requires that monetary shocks be perfectly
observable and that the structural parameters of a New Keynesian Taylor Rule are not empirically identifiable as they
do not feature in the implied equilibrium condition. McCallum (2012b) agrees that (at least in simple NK models) the
structural Taylor Rule parameters drop out, but argues that (i) it is not the structural system, but the reduced-form
one that agents estimate; and (ii) non-observability of the monetary shock does not inhibit learning, citing a result
from Evans and Honkapohja (1998).

8I use the word “learn” in the signal-extraction/state-space sense, not the sense of Evans and Honkapohja (2001).
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spot shocks do not covary with first-order expectations either. As such, the optimal linear filter puts
zero weight on them when producing second-order expectations too. The process then continues ad
infinitum up the hierarchy.

But what of the Taylor Principle?

The Taylor Principle – which, loosely speaking, is satisfied when nominal interest rates respond
by more than one-for-one to a change in inflation – does not have a clear point of genesis. As a
concept, it was implicit in Taylor’s (1993) related (but logically distinct) advocacy of a rules-based
approach to monetary policy. But an argument that it is necessary in order to achieve nominal
stability probably dates only to Taylor (1999). The actual phrase “Taylor principle” appears to
date to Woodford (1999), who established its mathematical relationship to Blanchard and Kahn’s
solution criteria as a way of addressing the indeterminacy first explored by Sargent and Wallace
(1975).

The language used to explain (and justify) the Taylor principle is quite simple. By raising the
nominal interest rate by more than one-for-one in response to an increase in inflation, the monetary
authority ensures that the real interest rate rises. This subdues economic activity among interest-
sensitive agents, which in turn dampens the rate of price inflation. Cochrane (2011) describes this
logic as being “Old Keynesian” and emphasises that it is directly at odds with the mathematics of
“New Keynesian” models that, via Blanchard-Kahn, rely on inducing explosive dynamics in order
to achieve determinacy.

It is critical to appreciate that in New Keynesian models, the Taylor principle is used as a
device to achieve determinacy, not to achieve stability. Under Blanchard-Kahn, it is the no-bubble
condition that guarantees stability by ruling out the explosive behaviour introduced by the Taylor
principle. When the Taylor principle is expressly violated, New Keynesian models become inherently
stable, but with full information they are then indeterminate. A New Keynesian model that violates
the Taylor principle and fully specifies the process for signal extraction (and thus, the forecast error)
is therefore both stable and determinate.

Indeed, I show below that in a model with dispersed information and flexible prices, satisfying
the Taylor principle produces a form of instability that cannot be addressed with a no-bubble
constraint. This is because with dispersed information, stability in the current price level requires
not only stability in expected future prices, but also stability in the current hierarchy of expectations
(a requirement that is sidestepped under full information). As the coefficient against inflation in
the monetary authority’s decision rule rises towards one, the equilibrium strategic complementarity
between firms increases, leading eventually to prices becoming explosive in higher-order beliefs.

Nevertheless, the language of a central bank systematically raising rates to dampen demand can
remain intact here. The model developed below allows for specifications such that in the event of
a positive “demand shock” (to the household discount factor), the monetary authority raises the
nominal interest rate by more than inflation will rise (so that the ex ante real interest rate rises)
without satisfying the Taylor principle (figure 1).9 The reason is simply that the authority responds
systematically to both (expected future) inflation and output, and the demand shock causes both

9Of course, as shown in Woodford (2003b) and Galí (2008), under Blanchard-Kahn conditions a positive coefficient
against output can allow the coefficient against inflation to be less than one and still obtain an eigenvalue greater
than one. The model developed here explicitly seeks an eigenvalue less than one.
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Note: The chart plots the impulse responses of log deviations from steady-state in the nominal
interest rate (i), the ex ante real interest rate (r), inflation (π) and output (y) following a positive
shock to the household discount factor. The Taylor-type rule is it = φπEt [πt+1] + φyEt [yt+1] + xmt
where xmt is a monetary shock (held to zero) and I set φπ = 0.5 and φy = 0.8. The largest eigenvalue
of the solution is 0.82. Inflation turns negative because the model features a determinate price level
(so a period of above-trend inflation must be followed by a period of below-trend inflation). Other
responses are also possible. For example, the real interest rate is negative on impact and positive
thereafter if φπ = φy = 0.5 or, indeed, under an interest rate peg (φπ = φy = 0).

Figure 1: Impulse responses following a positive demand shock

to rise. With sufficient cumulative weight across the two, the response of the nominal interest rate
can exceed the response of inflation.

3 Dispersed (that is, incomplete and heterogeneous) information

As a necessary precursor to presenting the main model of this paper, I here present a generalised
definition of an economy with incomplete and heterogeneous information and characterise its solu-
tion. The material of this section borrows heavily from existing literature on dispersed information,
which started with Woodford (2003a).10 In particular, Woodford invoked the central insight of
Townsend (1983) – that with heterogenous information and strategic interaction, rational agents
become interested in an infinite regress of higher-order beliefs – and demonstrated that because
of the sluggish response of higher-order expectations, aggregate rigidity broadly equivalent to that
produced by Calvo (1983) pricing may be replicated in a model with fully flexible price-setting firms
observing independent and unbiased signals of nominal GDP.

Significant work has followed Woodford (2003a),11 but the techniques deployed and the results
presented here most substantially draw on the subsequent work of Nimark (2008, 2015), who exten-
ded Woodford’s model to include the standard micro-founded household and monetary authority.

Definition 1. Let zt be the vector of endogenous aggregate variables necessary to describe an
economy’s equilibrium conditions in a given period;12 xt be the (n× 1) vector of aggregate exogenous

10The field of dispersed information is one of three strands of research that seek to reintroduce the ideas of Lucas
(1972) and Phelps (1984) – that information frictions are crucial to explaining the dynamics of aggregate variables
following a shock. The other two strands are sticky information, which started with Mankiw and Reis (2002, 2006,
2007), and rational inattention, which dates to Sims (2003).

11In addition to Nimark’s papers, see, for example, Lorenzoni (2009), Angeletos and La’O (2009, 2010), Graham
and Wright (2010), Graham (2011a,b), Melosi (2014) and Kohlhas (2014).

12For example, for the standard three-equation New Keynesian model this will just be inflation.
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variables; st (i) be the vector of signals observed in period t by agent i ∈ [0, 1]; and ut and vt (i)
be aggregate and idiosyncratic vectors of transitory, mean-zero and jointly-orthogonal innovations
(so that V Cov (ut) = Σu, V Cov (vt (i)) = Σv ∀i, Cov (ut,vt (i)) = 0 ∀i and Cov (vt (i) ,vt (j)) =
0 ∀i 6= j).

A linear economy with dispersed information is one that (i) evolves as

zt =
∞∑
q=0

AqEt [zt+q] +B0Et [xt] + C0xt (3a)

xt = Pxt−1 + ut (3b)

Et [·] =
∫ 1

0
E [·|It (i)] di (3c)

It (i) = {It−1 (i) , st (i)} (3d)

st (i) = M0zt +M1zt−1 +Nxt + vt (i) (3e)

and (ii) is such that equation (3a) describes a competitive equilibrium, in that it is the result of
aggregating agents’ individually optimised decision rules.

The inclusion of endogenous aggregate variables beyond period t+ 1 in equation (3a) is done to
allow for problem statements that may be non-recursive. Note that either (or both) of xt and vt (i)
might include both ‘fundamental’ shocks (such as productivity shocks) and ‘noise’ shocks (such as
measurement error).

Note, too, that the model nests the basic scenario of (1) by (i) setting Aq = 0 ∀q ≥ 2; (ii) taking
the variance of vt (i) to zero; and (iii) assuming that the signal equation (3e) is fully invertible. In
that case, equation (3a) reduces to (1) with A = A−1

1 (I −A0) and B = −A−1
1 (B0 + C0).

Next, given the inclusion of heterogeneous information, so that the average expectation is distinct
from agents’ individual expectations, I also make use of the consequent hierarchy of higher-order
expectations. The internally recursive definition listed here is used to ease with the solution below.

Definition 2. In a linear economy with dispersed information, the hierarchy of higher-order
expectations regarding xt is defined as

Xt ≡
[

xt

Et [Xt]

]
=
[
x′t E

(1)
t [x′t] E

(2)
t [x′t] · · ·

]′
where E(0)

t [xt] ≡ xt (4)

E
(k)
t [xt] ≡ Et

[
E

(k−1)
t [xt]

]
∀k > 0

Further, the matrices S and T are defined to select xt and Et [Xt] from Xt respectively (that is,
such that SXt = xt and TXt = Et [Xt]).

Note that the matrix T amounts to a shift operator. Post-multiplying a matrix A with T shifts the
elements of A to the right by n places (n being the number of elements in xt). Finally, it remains
only to define rationality in this context.

Definition 3. A rational economy with heterogeneous information is one in which

(i) all agents know the structure and parameters of the economy and this is common knowledge;

(ii) agents’ expectations are unbiased; and
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(iii) agents’ expectations are optimal in the sense that they minimise their mean square errors.

This is a more restrictive definition of rationality than normally imposed in macroeconomic
models, which only formally impose (i) and (ii), even though (iii) is commonly imagined to hold
implicitly. In a linearised setting, the optimal mechanism for signal extraction is a Kalman filter,13

in which agent i’s period-t expectation about an unknown vector (Xt) is given by:

Et (i) [Xt] = Et−1 (i) [Xt] +Kt (i)
{
st (i)− Et−1 (i) [st (i)]

}
(5)

where Kt (i) is a projection matrix (the Kalman gain). When agents’ signals are symmetric, as in
(3e), the Kalman gain will be common to all agents. Provided that Xt is stationary, a time-invariant
Kalman gain will emerge so that Kt (i) = K ∀i, t.

With these definitions in place, I am in a position to state the following result (the proof is
provided in Appendix A).

Proposition 1. A rational linear economy with dispersed information solves uniquely as

zt = ΓXt (6a)

Xt = FXt−1 +Gut (6b)

where the matrices Γ, F and G are implicitly given by

Γ =

 ∞∑
q=0

AqΓF q
T +B0ST + C0S (6c)

F = I∞ ⊗ P + T ′Ω (6d)

G =
[
In

KΘ

]
(6e)

with

Λ = M0ΓF +M1Γ +NPS (6f)

Θ = (M0Γ +NS)G (6g)

Ω = T ′ΩT +KΛ (I − T ) (6h)

K =
(
FV Λ′ +GΣuΘ′

) (
ΛV Λ′ + ΘΣuΘ′ + Σv

)−1 (6i)

V = FV F ′ +GΣuG′ −K
(
ΛV F ′ + ΘΣuG′

)
(6j)

The matrix V is the time-invariant variance-covariance of agents’ contemporaneous expectation
error (Vt|t = V Cov (Xt − Et (i) [Xt])). Note that the identification of Γ in equation (6c) represents
an application of the method of undetermined coefficients conditional on the rest of the solution.

Critically, in this economy all aggregate variables – and the complete hierarchy of expectations
about the state of the economy – have explicit, moving-average representations as weighted sums
of past exogenous shocks. Since all expectations (including those of future variables) are based on
current and past signals, the overall economy has an entirely backward-looking structure, despite all
individual agents being fully optimising, rational and forward-looking.

Although proposition 1 establishes a unique equilibrium, it does not provide for the stability of
that equilibrium. Instead, stability requires the following condition.

13Optimal in the sense of minimising mean square error. In a linear model with Gaussian shocks, the Kalman filter
represents the full Bayesian estimator.

9



Proposition 2. Define Q ≡
∑∞
q=0AqΓF q. The equilibrium identified in proposition 1 will be stable

if, and only if, all eigenvalues of the matrix QQ′ lie within the unit circle.

3.1 A simple example

As a simple example, suppose that xt is univariate with P = ρ ∈ (0, 1), and that agents each observe
a single unbiased signal such that M0 = M1 = 0 and N = 1:

xt = ρxt−1 + ut where ut ∼ N
(
0, σ2

u

)
(7a)

st (i) = xt + vt (i) where vt (i) ∼ N
(
0, σ2

v

)
(7b)

Each agent chooses an action, zt (i). Agents face quadratic losses when their choice deviates from
either the hidden state or the average choice of others:14

ui (zt, xt) = − (1− β) (zt (i)− xt)2 − β (zt (i)− zt)2 β ∈ (0, 1)

where zt =
∫ 1

0 zt (i) di. With agents maximising their expected payoff without explicitly knowing
either the state or the average action, their optimal choice is given by

zt (i) = βEt (i) [zt] + (1− β)Et (i) [xt]

or, in aggregate,

zt = β Et [zt] + (1− β)Et [xt] (7c)

In this example, equation (7c) corresponds to the competitive equilibrium conditions (3a) in the
general case described above.

A similar setting to this one was explored by Woodford (2003a), who supposed xt to be the
growth rate of nominal GDP and the agents conducting signal extraction to be price-setting firms.
In this case, the matrix Γ is easily obtained by substituting (7c) back into itself to obtain

zt = ΓXt (8a)

Γ = (1− β)
[
1 β β2 β3 · · ·

]
(8b)

Further, the F matrix is lower triangular and both F and G matrices are fully specified, con-
ditional on the Kalman gain (note that with only one signal, the Kalman gain will be a vector
(k =

[
k1 k2 k3 · · ·

]′
).

F = ρ



1 0 0 0 · · ·
k1 (1− k1) 0 0 · · ·
k2 (k1 − k2) (1− k1) 0 · · ·
k3 (k2 − k3) (k1 − k2) (1− k1)
...

...
... . . .


G =



1
k1

k2

k3
...


(9)

The eigenvalues of F are then just ρ and ρ (1− k1), with the latter repeated ad infinitum. So
long as k1 ∈ (0, 1), which requires only that ρ, σ2

u and σ2
v be positive (see below), the hierarchy of

beliefs will be stable. Note that the evolution and stability of agents’ expectations are independent
of the degree of strategic complementarity (β) here.

14An alternative utility function described by Morris and Shin (2002) presents the strategic complementarity as
being a zero-sum game, but produces the same optimal decision rule for individual agents.
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To appreciate how this comes about, consider equations (6d) and (6h), which here reduce to

F = I∞ ⊗ ρ+ T ′Ω (10a)

Ω = {kΛ (I − T )} + T ′ {kΛ (I − T )}T + (T ′)2 {kΛ (I − T )}T 2 + · · · (10b)

Λ =
[
ρ 0 0 0 · · ·

]
(10c)

Since the matrix T is a shift operator, where post-multiplying a matrix A with T shifts the
elements of A to the right by n places (n being the number of elements in xt; n = 1 in this
example), then pre-multiplying A by T ′ shifts the elements of A down by n places. I therefore have
here that

{kΛ (I − T )} =
[
ρk −ρk 0 0 · · ·

]
(11a)

T ′ {kΛ (I − T )}T =
[

0 0 0 0 0 · · ·
0 ρk −ρk 0 0 · · ·

]
(11b)

(
T ′
)2 {kΛ (I − T )}T 2 =


0 0 0 0 0 0 · · ·
0 0 0 0 0 0 · · ·
0 0 ρk −ρk 0 0 · · ·

 (11c)

...

from which the emergence of F should be clear.

Coupled with this, the time-invariant Kalman gain satisfies

k =
(
FV

[
ρ

0

]
+ σ2

u

[
1
k

])
×
([
ρ 0′

]
V

[
ρ

0

]
+ σ2

u + σ2
v

)−1

(12a)

V = FV F ′ + σ2
u

[
1 k′

k kk′

]
− k

(
FV

[
ρ

0

]
+ σ2

u

[
1
k

])′
(12b)

Denoting v11 as the upper left element of V and v1 as its left-most column, this simplifies to

k =
(
ρFv1 + σ2

u

[
1
k

])
× 1
v11 + σ2

u + σ2
v

(13a)

V = FV F ′ − ρkv′1F ′ + σ2
u

[
1− k1 (1− k1)k′

(I − T )k (I − T )kk′

]
(13b)

Reading off the top element in k and the top-left element in V gives two equations in two unknowns

k1 = ρv11 + σ2
u

v11 + σ2
u + σ2

v

(14a)

v11 = ρ2 (1− k1) v11 + (1− k1)σ2
u (14b)

Note that k1 must fall within the range (0, 1) for any strictly positive values of ρ, σ2
u and σ2

v . Solving
these and substituting the answers back in, the whole of k and V may be solved recursively. For
example, we can read out that

k2 = ρ (k1v11 + (1− k1) v21) + σ2
uk1

v11 + σ2
u + σ2

v

(15a)

k3 = ρ (k2v11 + (k1 − k2) v21 + (1− k1) v31) + σ2
uk2

v11 + σ2
u + σ2

v

(15b)

...
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4 A New Keynesian Theory of the Price Level

I now move on to describe a variation of the New Keynesian model for which: in steady-state the rate
of inflation is uniquely determined as a choice of the monetary authority, while out of steady-state
(and conditional on no change in steady-state) not just the rate of inflation but also the deviation of
the price level is determinate, despite the monetary authority being an inflation-targeter. As such,
the overall price level is determined, up to an initial value.

The model features Ricardian equivalence and lump sum taxes to eliminate any influence of fiscal
policy. The key differences between the model presented here and the textbook three equation model
of Woodford (2003b) or Galí (2008) are:

1. Instead of granting firms access to full information but preventing them from fully using it
by imposing that prices are somehow “sticky,” I assume that prices are perfectly flexible but
subject firms to incomplete and heterogeneous information.

2. Instead of having the monetary authority respond to current output and inflation, I assume
that it responds to expected next-period output and inflation.

3. I impose an upper bound for the responsiveness of the monetary authority to deviations of
inflation from target – that is, I disregard the Taylor principle – when in steady-state (although
not necessarily when out of steady-state).

The first of these changes seems well justified by (i) microeconomic evidence suggesting that, in
the United States, at least, the median duration of prices in CPI data appears to be less than four
months (Klenow and Kryvtsov, 2008; Klenow and Malin, 2010) and (ii) the fact that state-based
pricing must at least partially offset any monetary non-neutrality derived from time-based pricing.

The second alteration is a fairly standard extension and in any event quite clearly represents a
more accurate characterisation of modern central banking practice. For example, the official remit
for the Monetary Policy Committee (MPC) of the Bank of England declares that “[t]he inflation
target is forward-looking to ensure inflation expectations are firmly anchored in the medium term.”
(HM Treasury, 2013) Together with flexible prices, this change also delivers the determinacy of the
aggregate price level rather than just the inflation rate (see below).

The final change ensures the stability and uniqueness of the steady-state rate of inflation. Al-
though this may strike readers as odd, it bears emphasising the difficulty that empirical studies
have in obtaining estimates for central banks’ coefficients against inflation that exceed unity. For
example, Coibion and Gorodnichenko (2012) document that in the United States, if the economet-
rician uses Federal Reserve Green Book forecasts to capture central bank expectations and interest
rate smoothing is not included in the empirical specification, the Taylor principle was not satis-
fied during the Greenspan era.15 Creel and Hubert (2015) investigate the transition to inflation
targeting in Canada, Sweden and the UK, using a structural break test, estimates of time-varying
parameters and a Markov-Switching VAR. They find that coefficients against inflation in estimated
policy decision rules did not materially change with the transition and, more importantly, remained
solidly below one. As will be described below, this requirement is also only a condition of the
decision rule when in steady state. Non-linear specifications that give greater weight to inflation
when out of steady state remain admissible.

15Coibion and Gorodnichenko (2012) interpret this fact as speaking in favour of including interest rate smoothing,
taking a need for the Taylor principle to be satisfied as axiomatically true.
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The unique determination of the price level is achieved in two parts. First, note that in the
standard New Keynesian model, references to the previous-period price level appear in two locations:
(i) the Phillips curve when individual prices are sticky so that not all firms can update each period;
and (ii) the Taylor rule when the central bank responds to current inflation (since πt = pt − pt−1).
By assuming both flexible prices and that the monetary authority focuses on future inflation, any
reference to the previous-period price level is removed from the equilibrium conditions, leaving only
the current and future price levels to consider.

Second, the introduction of incomplete information transforms all expectations about unknown
variables – including all future variables – into functions of current and past observables. Together,
these changes are sufficient to render the current price level itself into a function of firms’ expect-
ations. Since the hierarchy of firms’ expectations follows an autoregressive process, the price level
therefore has a moving average representation as a function of the path of exogenous shocks and is
therefore fully determined without any need to appeal to the Blanchard-Kahn conditions.

The base model presented in this section only features incomplete information on the part of
firms. Strictly, this is all that is necessary to avoid the need to invoke Blanchard-Kahn, as the
equilibrium condition of the economy may be written exclusively in terms of the (firm-determined)
price level. An extension to also impose incomplete information on the monetary authority –
similarly to Kohlhas (2014) – is presented in section 5 below.

4.1 Timing

In contrast to the canonical New Keynesian model, in which all agents have full information and
the nominal interest rate, inflation and demand/output are all jointly determined by a Walrasian
auctioneer, I instead suppose that each period proceeds in two stages:

1. In stage one (“overnight”), firms observe their signals and adjust their prices accordingly,
thereby determining inflation.

2. In stage two (“the working day”), the representative household and monetary authority, both
of whom have full information, jointly determine the market-clearing nominal interest rate
and average nominal wage. The household reveals the quantity demanded from each firm at
the given prices, firms discover their current-period marginal costs and produce the goods.
The household consumes the goods entirely.

4.2 The household

Each period, a representative household with full information maximises

EΩ
t

[ ∞∑
s=0

βsex
c
t+s {U (Ct+s)− V (Ht+s)}

]
where U (Ct) = C

1− 1
σ

t − 1
1− 1

σ

(16)

and V (Ht) = H
1+ 1

ψ

t

1 + 1
ψ

subject to a standard budget constraint and where EΩ
t [·] ≡ E [·|Ωt] is the mathematical expect-

ation conditional on all information available in period t; Ct is aggregate consumption; Ht is the
aggregate labour supply; σ is the elasticity of intertemporal substitution; ψ is the Frisch elasticity
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of labour supply; and xct is a persistent, mean zero “preference” shock (specified below). Aggregate
consumption is given by the Dixit-Stiglitz aggregator over individual consumption goods:

Ct =
(∫ (

e−v
y
t (j) Ct (j)

) ε−1
ε dj

) ε
ε−1

(17)

where ε is the elasticity of substitution and vyt (j) is a transitory, mean zero, idiosyncratic shock
to the household’s demand for good j (defined below). The household’s subsequent first-order
conditions are:

Wt

Pt
U ′ (Ct) = V ′ (Ht) (18)

ex
c
t U ′ (Ct) = β (1 + it)EΩ

t

[
ex

c
t+1 U ′ (Ct+1) 1

Πt+1

]
(19)

where Wt/Pt is the real wage; it is the net nominal interest rate; and Πt ≡ Pt/Pt−1 is the gross rate
of inflation. It can also be shown that household demand for good j is given by:

Ct (j) =
(
Pt (j)
Pt

)−ε
Ct e

vyt (j) (20)

and the aggregate price level by:

Pt =
(∫

Pt (j)1−ε dj

) 1
1−ε

(21)

4.3 Firms

Production

Each good is produced by a single firm according to a common production function that deploys
labour with decreasing marginal productivity:

Yt (j) = AtLt (j)1−α (22)

At = Gt (23)

where Lt (j) is the hours worked by employees of firm j in period t and At is total factor productivity,
broadly defined, which simply grows determinately. Firm j’s real marginal cost is then:

MCt (j) = (1 + η) Wt (j)
Pt

1
Aη+1
t

Yt (j)η (24)

where η ≡ α
1−α is the elasticity of marginal cost w.r.t. output and Wt (j) is the nominal wage paid

by the firm, defined as:

Wt (j) ≡Wt e
vwt (j) (25)

where vwt (j) is a transitory, mean zero shock to the firm’s wage bargaining.

Price setting

Firms have complete flexibility to reset their prices in every period, subject to their incomplete
information. Their optimal price is a simple mark-up over their expected nominal marginal cost:

Pt (i) =
(

ε

ε− 1

)
Et (i) [PtMCt (i)] (26)
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Information

Firms have only incomplete and heterogeneous access to information about the state of the economy.
They each observe a set of signals about the aggregate economy (defined below) and use these to
update their beliefs. Note that equation (26) implies that there is strategic complementarity in
firms’ decision-making, so that each of them will care about not only the real marginal cost they
will face but also the decisions of all other firms.

4.4 Market clearing and aggregation

All markets clear in every period, so that

Yt (j) = Ct (j) ∀j, t (27a)∫ 1

0
Lt (j) dj = Ht ∀t (27b)

This implies that aggregate output is given by:

Yt = ∆tAtH
1−α
t (28)

where ∆t, represents distortions from relative prices and transitory shocks to relative demand:

∆t ≡
(∫ {

ev
y
t (j)

(
Pt (j)
Pt

)ε}−(1+η)
dj

)− 1
1+η

(29)

4.5 The monetary authority

The monetary authority targets inflation and, like the household, enjoys full information. It sets
the nominal gross interest rate according to a potentially non-linear function of (i) the difference
between expected next-period inflation and a publicly-known target; (ii) the difference between
expected next-period output and it’s steady-state level (see below); and (iii) a persistent, mean zero
monetary policy shock (xmt ):

1 + it = EΩ
t

[
f

(
Πt+1
Π∗ ,

Yt+1
Y ss
t+1

, xmt ; Φ
)]

(30)

where Πt+1 ≡ Pt+1/Pt is next-period gross inflation and Π∗ is the gross inflation target. I leave
the function f (·) unspecified except to assume that when in steady-state (that is, when xmt = 0,
EΩ
t [Yt+1] = Yt+1 = Y ss

t+1 and EΩ
t [Πt+1] = Πt+1 = Πss):

f1

(Πss

Π∗ , 1, 0; Φ
)
≥ 0 (31a)

f11

(Πss

Π∗ , 1, 0; Φ
)
≥ 0 (31b)

1
Π∗ f1

(Πss

Π∗ , 1, 0; Φ
)
< Rss (31c)

where Rss is the gross real interest rate in steady state. The first two of these simply assume –
uncontroversially, one assumes – that the nominal interest rate is weakly increasing and weakly
convex with respect to inflation when in steady-state. The third imposes an upper bound on the
steady-state responsiveness of the nominal interest rate to inflation. Supposing an annual real rate
of 4%, in a quarterly model this upper limit will be roughly 1.01.
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This requirement in (31c) may strike readers as odd given that many calibrated DSGE models
suppose that the monetary authority responds by considerably more than one-for-one to changes in
inflation (the Taylor principle). However:

• The model does not require the use of Blanchard-Kahn conditions in finding a solution and
so does not need to observe the Taylor principle.

• The requirement specified here only needs to apply in steady-state. It remains perfectly
permissible for the response to be higher when away from steady state.

For example, suppose that when away from the lower bound, the monetary authority’s decision rule
has the following second-order approximation:16

it = iss + φyE
Ω
t [yt+1] +

(
φπ + (xct)

2
)
EΩ
t [πt+1] + xmt (32)

so that the authority responds by more to deviations of inflation from target when faced with
a “demand shock”. In this case, the partial derivative of the nominal interest rate to expected
deviations of inflation from target is:

∂ it

∂EΩ
t [πt+1]

= φπ + (xct)
2 (33)

Supposing that the variance of shocks to the household discount factor equals one, the monetary
authority’s marginal response to inflation deviations will then be φπ + 1 on average,17 but will vary
around this and will fall to φπ when the shock is zero. Such a framework – in which the monetary
authority’s responsiveness differentiates between shocks – is another plausible and arguably more
realistic deviation from the more common Taylor-type rules. For example, the Bank of England’s
remit expressly permits such a differential treatment, allowing the MPC to “look through” deviations
of inflation from target in certain circumstances (HM Treasury, 2013).

4.6 Steady state

I define steady state to be the solution to the model under the assumption that (i) xt+q = 0 ∀q ≥ 0
and (ii) this is known to the household and the monetary authority.

From the perspective of the household and the monetary authority, the economy is therefore
deterministic. From the perspective of firms, however, the economy remains stochastic. That is, if
Vt|t = V Cov (Et (i) [Xt]−Xt) is the (common) variance of firms’ expectation errors, then although
Vt|t → V under a convergent Kalman filter, V 6= 0, even in steady-state.

Conditional on a steady-state solution for inflation, the steady-state values for real variables
may readily be found in the usual way, imposing a transversality condition on the real debt of the
household. To determine the value of steady-state inflation, consider the household Euler equation:

ex
c
t U ′ (Ct) = β (1 + it)EΩ

t

[
ex

c
t+1 U ′ (Ct+1) 1

Πt+1

]
(34)

In steady state, with no shocks and the household exhibiting perfect foresight, this becomes

U ′ (Csst ) = β (1 + isst )
(
U ′
(
Csst+1

) 1
Πss
t+1

)
(35)

16Note that equation (32) implicitly assumes that Πss = Π∗ (so that, when expressed in log deviations from steady-
state, π∗ = 0). This need not necessarily be the case, but since conditional on the Fisher relation both Πss and Π∗
are chosen by the monetary authority, it seems most plausible to assume that they are equal.

17The unconditional average response will of course be different to φπ + 1 due to covariance terms.
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Since the labour supply is constant, consumption will grow with TFP and this further reduces to
the famous Fisher relation

1 + isst = RssΠss
t+1 (36)

where the steady-state gross real rate of interest is Rss = G
1
σ /β. For the monetary authority, the

corresponding steady-state equation is

1 + isst = f

(Πss
t+1

Π∗ , 1, 0; Φ
)

(37)

from which it follows that the steady-state rate of inflation is implicitly defined by

Πss = (Rss)−1 f

(Πss

Π∗ , 1, 0; Φ
)

(38)

where the time subscript has been removed.

Figure 2 plots equation (36) and two illustrative examples of equation (37). The slope of the
steady-state household line corresponds to the gross real interest rate and so is faintly steeper than
the 45o-line (not shown). Of the two monetary authority lines, option 1 shows what might be
thought of as a ‘standard’ policy rule: satisfying the Taylor principle where possible, while still
being subject to a lower bound. Option 2 shows a rule that instead satisfies assumption (31c).

1

1

Π
ss
t+1

1 + isst

 

 

Π
ss
L Π

ss
H

SS Household
SS Monetary Authority (option 1)

SS Monetary Authority (option 2)

Figure 2: Steady-state inflation in the New Keynesian model.

Under option 1, as illustrated and explored by Benhabib, Schmitt-Grohe, and Uribe (2001), two
steady-state equilibria emerge. Of these, Πss

L is stable and Πss
H is unstable. It is the higher, unstable

steady-state that the Blanchard-Kahn conditions are designed to select. By choosing a response
to inflation that exceeds the real gross interest rate, the monetary authority produces an unstable,
explosive steady state. By further imposing a transversality condition on inflation, deviations from
that explosive steady state are expressly ruled out by assumption. Subject to acceptance of the
Blanchard-Kahn conditions to solve them, standard New Keynesian models are therefore locally
saddle-path stable following ‘fundamental’ shocks, but maintain an assumption that beliefs about
steady state remain perfectly anchored.

Under option 2, however, the slope of the steady-state monetary authority line at the point of
intersection is less than Rss (indeed, it is than one). As such, the model features a unique and
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globally stable steady-state equilibrium at a rate of inflation chosen by the monetary authority.
The imposition of a lower bound is not a problem under option 2. Indeed, the model features a
unique steady state (and a determinate price level around that steady-state) even in the presence
of an interest rate peg. The only requirement is that the Taylor principle not be imposed in steady
state.

In typical full-information models where expectation-formation remains unspecified, option 2
produces an indeterminacy: although the steady state is stable, the path of inflation back to that
steady state following a shock cannot be described, as the path for agents’ beliefs is not identified.
But by explicitly modelling the signal extraction process of price-setting firms, the model becomes
determinate: a well-specified path for expectations delivers a well-specified path for endogenous
aggregate variables (like inflation).

Here, with a unique steady-state equilibrium in the rate of inflation, I suppose that (i) the initial
aggregate price level (P0) and (ii) details of the steady-state are common knowledge, so that all
agents, including all firms, know that the steady-state price level is given by

P sst = (Πss)t P0 (39)

As with standard New Keynesian models, this is an assumption of the perfect anchoring of expect-
ations regarding the steady-state rate of inflation.

4.7 Deviations from steady-state

I log-linearise the model around steady-state and use lower-case letters to denote log deviations
from steady-state (e.g. yt = ln (Yt) − ln (Y ss

t )). The three summary equations of the model are
given by:

yt = EΩ
t [yt+1]− σ

(
it − EΩ

t [πt+1]
)

+ σ
(
xct − EΩ

t

[
xct+1

])
(40a)

it = φyE
Ω
t [yt+1] + φπE

Ω
t [πt+1] + xmt (40b)

pt (i) = Et (i) [pt] + κEt (i) [yt] (40c)

where πt = pt − pt−1 and pt =
∫
pt (i) di. The full expression for κ is given in the appendix. These

represent the same three equations as the standard New Keynesian model, with two key differences:
(i) the monetary authority’s interest rate rule is forward-looking; and (ii) the Phillips curve has no
forward- or backward-looking elements as prices are fully flexible. Recall that EΩ

t [·] = E [·|Ωt] is the
expectation conditional on all period-t information, while Et (i) [·] = E [·|It (i)] is the expectation
conditional on firm i’s period-t information set, where It (i) ⊂ Ωt.

Substituting equations (40a) and (40b) into equation (40c) and taking the average then produces
the (competitive) equilibrium condition of the model:

pt = (1− ξ)Et [pt] + ξ (1− δ)
∞∑
q=0

δqEt [pt+q+1] + b′pEt [xt] (41a)

δ = 1− σφy (41b)

ξ = κσ (1− φπ) (41c)

The full expression for bp is given in the appendix. Equation (41a) shows that the period-t equilib-
rium aggregate price level is a weighted average of firms’ average beliefs about current and future
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values of the same. Correspondingly, anything that raises firms’ expectations about the future
price level will cause the current price level to increase. Note, in particular, that with fully flexible
prices, so that firms’ price setting is a sequence of static (that is, period-by-period) optimisation
problems, the household discount factor (β) does not enter the the determination of the price level.
Instead, the discount factor for price determination (δ) is a function of the monetary authority’s
responsiveness to (future) output and the household’s responsiveness to the interest rate.

The equilibrium condition (41a) corresponds to equation (3a) in the definition of an economy
with dispersed information. So long as firms’ signals (specified below) are in the form of equation
(3e), the solution will therefore be of the form

pt = γ ′pXt (42a)

Xt = FXt−1 +Gut (42b)

4.8 Stability conditions

In particular, the expression for γp is given by

γ ′p = b′pST (I −H)−1 (43a)

H =
(
(1− ξ) I + ξ (1− δ) (I − δF )−1 F

)
T (43b)

Defining ρ {?} to be the spectral radius (that is, the largest absolute eigenvalue) of the matrix
?, the stability of (42) then requires that

ρ {F} < 1 to ensure the stability of Xt (44a)

ρ {δF} < 1 to ensure the invertibility of (I − δF ) (44b)

ρ {H} < 1 to ensure the invertibility of (I −H) (44c)

The latter two of these conditions can be best understood by reconsidering the equilibrium condition
of the economy (41a). Condition (44b) relates to stability in expectations of future prices:

(1− δ)
∞∑
q=0

δqEt [pt+q+1] = (1− δ)γ ′p
∞∑
q=0

δqF qEt [Xt]

This object will be finite only if any expected increase in future price pt+q is able to be offset by the
discount factor δq. Plugging in the solution, this amounts to a requirement that limq→∞ (δF )q = 0,
which is true i.f.f. ρ {δF} < 1.

Condition (44c) relates to stability in the hierarchy of expectations. This is perhaps best
appreciated by considering the setting where δ = 0, in which case H = I − (1− ξ)T (so that
condition (44c) becomes ρ {(1− ξ) I} < 1) and the equilibrium price level would be given by

pt = (1− ξ)Et [pt] + b′pEt [xt] = b′p

∞∑
k=0

(1− ξ)k E(k)
t [xt]

where the second equality is obtained by plugging the first back into itself ad infinitum. This object
will be finite only if (1− ξ) ∈ (−1, 1).

In the full model, when (44c) is satisfied, firms will place decreasing weight on higher-order
expectations. In that case, an arbitrarily accurate approximation of the full solution may be found

19



by defining a cut-off, k∗, and simulating orders of expectation up to that limit. When (44c) is not
satisfied, firms will place increasing weight on higher-order expectations and so, for any non-zero
shock, the price level will be explosive.

Finally, note that given the solution for γp, it is straightforward to obtain a corresponding
expression for γy such that yt = γ ′yXt:

γ ′y = σ (1− φπ)γ ′p
(
(1− δ) (I − δF )−1 F − I

)
+ µ′y (I − δP )−1 S (45)

4.9 Firms’ signals

To close the model, it remains only to specify what signals are observed by the firms. Unlike models
of full information, where the matter is trivial – everybody observes everything – this question is of
crucial importance when considering any model of incomplete information.

One distinction to be made is between what information a firm is exposed to in principle, and
what information is actually used to inform their decision making. The exogenous imposition of an
information processing constraint in the style of Sims (2003), or the imposition of a finite flow cost to
be paid for each signal incorporated (analogous to an informational menu cost), for example, might
explain why firms with potential exposure to truly enormous torrents of information might instead
form their beliefs – and so base their decision making – on the conditionally rational combination of
only a small number of signals. In the simulations shown below, I assume that each firm observes:

• A noisy signal regarding the previous period aggregate level of output.

• A noisy signal regarding the previous period aggregate price level.

That is,

st (i) =
[
yt−1 + x

ny
t + v

ny
t (i)

pt−1 + x
np
t + v

np
t (i)

]
(46)

where xnyt and xnpt are public noise shocks to firms’ signals regarding the level of output and the price
level respectively, in order to capture the effect of imperfect measurement by national statistical
agencies. The idiosyncratic noise may be interpreted as firms’ failure to directly observe the public
signal (perhaps instead getting an impression from newspaper coverage), an error of judgement, or
as the imperfect applicability of national public signals to the aggregation level most relevant to
each firm (e.g. at an industry or sector level). Note that if the variance of idiosyncratic shocks in
(46) were to be zero, agents’ information sets would be common but still incomplete, as (i) signals
would be received with a lag and (ii) they would still include public noise.

When making comparisons to full information models, I will therefore also grant access to signals
of the underlying demand shocks themselves:

st (i) =


yt−1 + x

ny
t + v

ny
t (i)

pt−1 + x
np
t + v

np
t (i)

xct + vct (i)
xmt + vmt (i)

 (47)

The use of general signals about the previous-period output and price levels may strike some
readers as unrealistic. However, the results presented below remain qualitatively robust to adding
any of the following further signals to firms’ information sets:
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• Their own previous period quantity sold.

• Their own previous period nominal wage paid.

• A noisy signal of the previous period interest rate.

4.10 Stochastic processes

The economy therefore features four aggregate shocks: two “fundamental” shocks (a household
preference shock and a monetary shock) and two “noise” shocks. Gathered together, I refer to these
as the underlying state of the economy and suppose that they follow an AR(1) process:

xt ≡
[
xct xmt x

ny
t x

np
t

]′
(48a)

= Pxt−1 +Qut (48b)

where ut is a vector of period-t innovations identically and independently distributed as N
(
0, σ2

u I
)

and P is a matrix of fixed and commonly known parameters.

The set of idiosyncratic shocks for each firm (vt (i)) is assumed to be entirely transitory, fully
independent and jointly distributed as N

(
0, σ2

v I
)
, with Cov (xt,vt (i)) = 0 ∀i, t.

4.11 Simulation results

Table 1 lists benchmark parameters for the simulations presented below. Each aggregate shock (i.e.
each element of xt) is assumed to follow an independent AR(1) process with innovations exhibiting
unit variance. Idiosyncratic shocks are also assumed to be fully independent, although with higher
variance than for aggregate shocks. Note that with flexible prices, there is no role for the household
discount factor in equilibrium, despite the household being forward looking and possessing full
information.

Parameter Value Description
σ 1.0 Elasticity of intertemporal substitution (log utility)
ε 4.0 Elasticity of demand
ψ 1.0 Frisch elasticity of labour supply
η 0.5 Elasticity of marginal cost
φπ 0.5 CB coefficient against next-period inflation
φy 0.5 CB coefficient against next-period output
ρ 0.7 The AR(1) coefficient for each underlying shock
σ2
u 1.0 The variance of aggregate innovations
σ2
v 5.0 The variance of idiosyncratic shocks

Table 1: Benchmark parameterisation

Under the benchmark parameters listed here, κ = 1 (the slope of the Phillips curve), (1− ξ) =
0.5 (contemporaneous coefficient in the equilibrium condition) and δ = 0.5 (discount factor in the
equilibrium condition). The corresponding spectral radius of H is 0.769.

All models have been solved with k∗ = 150. That is, the first 150 orders of higher-order
expectations are included in the estimated solutions. With four variables in the underlying state
(xt), this implies a total of 604 variables in the estimated full state (Xt). Given the benchmark
parameter choices (note that ρ {H}150 ≈ 8× 10−18), the results presented here are not appreciably
sensitive to increasing the k∗ threshold.
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The discussion below focusses on the dynamics of the economy following two shocks: a monetary
shock (that is, to xmt ) and a common noise shock to firms’ signals of the price level (that is, to xnpt ).
Charts showing impulse responses following shocks to household preferences (xct) and to common
noise in firms’ signals of the output level (xnyt ) are provided in the appendix.

A monetary shock under the baseline parameterisation

Figure 3 plots the impulse responses of the level of output and the price level (together with firms’
average forecasts of the same); firms’ average forecast errors; and hierarchies of firms’ average
expectations about the four underlying shocks following a monetary shock under the baseline para-
meterisation (in particular, with φπ = 0.5 and φy = 0.5). Following the shock, firms rationally
attribute some of the signals they observe to (common) measurement error and some to idiosyn-
cratic noise. They are also unable to perfectly attribute the remainder between the two fundamental
shocks, causing their beliefs about household preferences to deviate from zero. This leads firms to
consistently underestimate the size of the shock, so that their forecast errors exhibit a persistent,
but ultimately temporary bias.

The response of the aggregate price level is more hump-shaped and more persistent than that of
the level of output because of the strategic complementarity in firms’ price-setting decisions. Since
firms’ demand is a function of their relative prices, individual firms do not wish to set their own price
too far from what they believe the aggregate price will be. As all firms have the same incentive,
the average price level therefore moves more sluggishly. The level of output returns monotonically
to its steady-state value following the shock, but note that this persistence is despite the complete
flexibility of firms’ prices: monetary non-neutrality emerges entirely through firms’ information
frictions here.

It is interesting to note that firms’ average forecast errors exhibit substantial serial correlation
– usually a sure sign of non-rationality – despite the firms’ fully rational use of the information
available to them. This emerges because of firms’ incomplete information sets when the researcher
(and the reader) are able to observe the firms’ behaviour with the benefit of full information. Note,
too, that convergence between forecast-error vintages and convergence of forecast errors (to zero)
are distinct. Forecast errors regarding the level of output do not change overly much across vintages,
instead simply converging back to zero over time as the shock subsides. Forecast errors regarding
the price level, however, exhibit substantial step improvements from period to period in addition
to converging eventually back to zero.

A monetary shock under an interest rate peg

As mentioned above, this model is able to accommodate settings in which the monetary authority
does not respond to the state of the economy at all. To illustrate this, figure 4 replicates figure
3, but under an interest rate peg (that is, when φπ = 0 and φy = 0). Without any monetary
authority response, the depth of the contraction is considerably larger (a little over twice as deep).
Firms’ beliefs about the true (monetary) shock are more accurate, although their beliefs about the
household preference shock deviate further from zero. Both sets of beliefs exhibit a much less hump-
shaped response. Firms’ average forecasts are both more accurate and exhibit a faster decaying
bias. Consequently, despite the greater depth of the recession, the duration of the downturn is
reduced.
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Various monetary regimes

Figure 5 next illustrates the trade-off between monetary regimes mentioned above more explicitly,
plotting impulse responses for the (true) levels of output and prices under various monetary policy
regimes. For higher values of φπ or φy, the level of output falls less on impact, but remains below
trend for longer thereafter. This trade-off emerges because, by responding to the state of the
economy, the monetary authority ‘muddies the waters’ of firms’ signals, making the informational
environment less favourable. When the shock occurs in period 1, so that firms first learn about it and
respond in period 2, then from period 3 onwards although firms receive a string of signals suggesting
that the economy is improving, they can never be absolutely certain whether this improvement is
because of the policy intervention or because of a sequence of lucky, offsetting shocks.

The effect of different regimes on the price level following a monetary shock is quite striking.
Greater stability – that is, smaller deviations from trend – is achieved with higher values of φy (as
might be expected) and with lower values of φπ. This latter result comes, mathematically, from
the expression for ξ. As φπ approaches unity from below, ξ falls to zero, the eigenvalues of H (in
equation (43a)) approach unity and, consequently, the expression for pt becomes ever larger. For
values of φπ equal to or greater than one, the system becomes explosive.

A monetary shock under common and full information

As this model is one of incomplete and heterogeneous information, it is natural to ask how the
model varies as firms have access to common information sets or even full information. Figure 6
illustrates these scenarios. When firms observe the benchmark signals (of lagged aggregate output
and price levels), lowering the variance of idiosyncratic shocks towards zero moves firms towards
sharing common information sets that nevertheless remain incomplete (as the signals are observed
with a lag and still retain common noise shocks). Even in extremis, with σ2

v = 0, monetary policy
shocks retain both an on-impact effect on output and some degree of persistence on the same.

When firms also have access to signals of the current-period underlying state, lowering the
variance of idiosyncratic shocks towards zero moves firms towards full (and, hence, common) in-
formation. Since prices are flexible, in the limit as firms become able to observe all fundamental
shocks as they occur, the level of output becomes perfectly unresponsive to monetary shocks and
prices bear the full brunt of the shock.

A shock to price expectations

Figure 7 presents impulse responses following a common noise shock to firms’ signals about the
aggregate price level. Since it is a noise shock (which only affects the economy through agents’
beliefs), rather than a fundamental shock (which enters agents’ decision rules directly), this may be
thought of as a short-hand way of capturing the effect of a shock to firms’ expectations.

Under the interpretation of being an expectation shock, figure 7 shows that it largely represents
a self-fulfilling prophecy. Unlike with a fundamental shock, the path of the actual price level closely
matches that of firms’ average expectation for the same. Although firms initially believe that output
will rise (because they attribute some of the movement in their signals to the fundamental household
preference and monetary shocks), output actually falls because the price rise was fundamentally
unjustified.
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The price level and firms’ average forecasts
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Note: The top two panels show the actual path, the path of firms’ average contemporaneous belief
and the sequence of firms’ average 4-period-ahead forecasts for each of the level of output and the
price level. The next two panels show the sequence of firms’ average forecast errors for the same.
The bottom four panels show the hierarchies of firms’ average beliefs about each of the underlying
shocks, with E(0)

t [xt] = xt and E
(k)
t [xt] = Et

[
E

(k−1)
t [xt]

]
for k ≥ 1.

Figure 3: Impulse responses following a monetary shock (φπ = 0.5 and φy = 0.5)
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Note: The top two panels show the actual path, the path of firms’ average contemporaneous belief
and the sequence of firms’ average 4-period-ahead forecasts for each of the level of output and the
price level. The next two panels show the sequence of firms’ average forecast errors for the same.
The bottom four panels show the hierarchies of firms’ average beliefs about each of the underlying
shocks, with E(0)

t [xt] = xt and E
(k)
t [xt] = Et

[
E

(k−1)
t [xt]

]
for k ≥ 1.

Figure 4: Impulse responses following a monetary shock under an interest rate peg (φπ = φy =
0)
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Note: The left-hand panels plot impulse responses for the level of output and the price level following
a monetary shock for different values of φπ while holding φy fixed. The right-hand panels plot the
same while holding φπ fixed and varying φy. Note that for values of φπ ≥ 1, the price level is
explosive.

Figure 5: Impulse responses following a monetary shock under various monetary policy regimes
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(b) Expanded signals

Note: The charts vary the variance of idiosyncratic shocks under two signal regimes (the monetary
policy regime remains at φπ = φy = 0.5 for both). The left-hand panels consider the benchmark
scenario with firms observing signals of the previous-period levels of output and prices. As the
variance of idiosyncratic shocks falls to zero, firms’ information sets become common, but remain
incomplete. The right-hand panels further add direct signals about the fundamental shocks, so that
as the variance of idiosyncratic shocks falls to zero, firms’ information sets become complete.

Figure 6: Impulse responses following a monetary shock under varying degrees of information
quality
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Note: The top two panels show the actual path, the path of firms’ average contemporaneous belief
and the sequence of firms’ average 4-period-ahead forecasts for each of the level of output and the
price level. The next two panels show the sequence of firms’ average forecast errors for the same.
The bottom four panels show the hierarchies of firms’ expectations about each of the four aggregate
shocks.

Figure 7: Impulse responses following a common noise shock to signals about the price level
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4.12 Adding a pure sunspot shock18

The addition of a pure sunspot shock – that is, an exogenous shock in agents’ signals that is neither
“fundamental” as a structural shock in the agents’ decision rules, nor measurement error “noise”
in signals based on those structural shocks – does not affect this economy at all. This is because
they are, by definition, uncorrelated with the fundamental and noise shocks. They therefore carry
no additional information and the optimal Kalman filter gives them zero weight. To illustrate this
point, I expand the “underlying state” to include a pure sunspot:

xt =
[
xct xmt x

ny
t x

np
t xSst

]′
(49a)

and similarly expand the baseline set of signals to include the sunspot:

st (i) =


s1 : yt−1 + x

ny
t + vyt (i)

s2 : pt−1 + x
np
t + vpt (i)

s3 : xSst

 (49b)

Recall that the optimal Kalman gain is Kt (i) = Cov
(
Xt, s

err
t|t−1 (i)

) [
V ar

(
serr
t|t−1 (i)

)]−1
where

serr
t|t−1 (i) = st (i)−Et−1 (i) [st (i)] is the signal innovation (new information made available in agent
i’s period-t signal vector). Since Xt is stationary and agents’ signal extraction problems are sym-
metric, this is common to all agents and converges to a constant Kt (i)→ K.

The following tables list these two components of the Kalman gain under the baseline paramet-
erisation. Table 2a gives the covariance of the hierarchy of expectations with the innovation in each
of the signals, while 2b gives the variance-covariance matrix of the signal innovations. The sunspot
shock, as a signal, covaries neither with other shocks nor with firms’ average expectations about
those other shocks. It therefore provides no information and the weight attached to it is zero.

(a) Cov
(
X0:2
t , serr

t|t−1 (i)
)

s1 s2 s3
xct 0.525 0.107 0
xmt -1.750 -0.357 0
x
ny
t 1.374 0.280 0
x
np
t -0.058 1.635 0
xSst 0 0 1.592

E
(1)
t [xct ] 0.335 0.107 0

E
(1)
t [xmt ] -1.117 -0.356 0

E
(1)
t

[
x
ny
t

]
0.878 0.278 0

E
(1)
t

[
x
np
t

]
-0.110 0.539 0

E
(1)
t

[
xSst

]
0 0 0.535

E
(2)
t [xct ] 0.223 0.097 0

E
(2)
t [xmt ] -0.742 -0.323 0

E
(2)
t

[
x
ny
t

]
0.583 0.254 0

E
(2)
t

[
x
np
t

]
-0.058 0.273 0

E
(2)
t

[
xSst

]
0 0 0.224

(b) V ar
(
serr
t|t−1 (i)

)
s1 s2 s3

s1 12.150
s2 0.981 8.570
s3 0 0 6.592

Table 2: Components of firms’ Kalman gain in the presence of a sunspot shock

18I thank Wouter den Haan for a fruitful conversation that emphasised this point.
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5 Extending the model to incomplete Central Bank information

In this section, I extend the basic model of the previous section to (i) add stochastic TFP; and (ii)
remove full information from the monetary authority, but leave it with the representative household.
In particular, the monetary authority will be uncertain about the aggregate level of TFP, output
and the price level, and will receive signals about these that are subject to noise, both in common
with firms and specific to the central bank.

5.1 The representative household

The representative household is unchanged from the baseline model above.

5.2 Firms

Production

Each good remains produced by a single firm according to a common production function with
decreasing marginal productivity for labour, but now with stochastic TFP:

Yt (i) = ex
a
t+vat (i)Lt (i)1−α (50a)

where the shocks xat and vat (i) are independent and mean zero (see below for more detail). Firm
i’s real marginal cost is then:

MCt (i) = (1 + η) Wte
vwt (i)

Pt
e−(1+η)(xat+vat (i)) Yt (i)η (50b)

where η ≡ α
1−α is the elasticity of marginal cost w.r.t. output.

Price setting

Firms’ price-setting remains unchanged from the baseline model above (see below for more detail
on firms’ information).

5.3 The monetary authority

The monetary authority sets the nominal interest rate according to the same general rule and
subject to the same conditions (31), but now subject to incomplete information (see below for more
detail):

1 + it = ECBt

[
f

(
Πt+1
Π∗ ,

Yt+1
Y ss
t+1

, xmt ; Φ
)]

(51)

5.4 Market clearing and aggregation

Market clearing now implies that aggregate output is given by:

Yt = ∆te
xatH1−α

t (52)

where ∆t represents distortions from relative prices and transitory shocks to productivity and
relative demand:

∆t ≡
(∫ {

ev
a
t (j)+vyt (j)

(
Pt (j)
Pt

)ε}−(1+η)
dj

)− 1
1+η

(53)
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5.5 Stochastic processes

The underlying state of the economy therefore features five variables: xt =
[
xat xct xmt x

ny
t x

ny
t

]′
.

I suppose that these follow the same AR(1) process as the baseline model with PρI and Q = I.

Individual firm idiosyncratic shocks (vt (i)) and shocks specific to the central bank (vCBt ) are
all perfectly transitory, independent and normally distributed with mean zero and unit variance.

5.6 Information

Firms

I expand firms’ signals slightly from the previous section to allow for stochastic TFP:

st (i) =


yt−1 + x

ny
t + vyt (i)

pt−1 + x
np
t + vpt (i)

xat−1 + vat−1 (i)

 (54)

That is, in addition to observing noisy signals about the previous period’s aggregate levels of output
and prices (unchanged from the baseline model), firms also observe their own TFP from the previous
period.

The monetary authority

The monetary authority observes the following signals each period:

s
(CB)
t =


yt−1 + x

ny
t + vCB:y

t

pt−1 + x
np
t + vCB:p

t

at−1 + vCB:a
t

xmt

 (55)

That is, it observes the same underlying signals about the previous-period output and price levels
as individual firms, subject to its own “idiosyncratic” error of interpretation. It also observes a
noisy signal regarding the previous-period aggregate TFP and perfectly observes the current-period
monetary shock.

Since the vCBt shocks are specific to the monetary authority and represent only noise (they do
not directly enter the decision rules of the household or firms), they are represent a pure way of
capturing a policymaker’s error of judgement. Unlike the corresponding shocks to firms, which are
atomistic, errors of judgement on the part of the monetary authority have the potential to affect
the wider economy.

Since vCBt shocks are perfectly transitory, the reader may well posit that their effect, if significant,
will be short-lived. However, as I illustrate below, the recursive nature of the Kalman filter, together
with the persistence of fundamental shocks, will cause the effects of any such error to be long-lived.
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5.7 Linear model and solution

Using the notation that lower-case letters represent log-deviations from the deterministic steady
state, I show in the appendix that the linearised model is now given by:

yt = EΩ
t [yt+1]− σ

(
it − EΩ

t [pt+1] + pt
)

+ σ
(
xct − EΩ

t

[
xct+1

])
(56a)

it = φπE
CB
t [pt+1 − pt] + φyE

CB
t [yt+1] + xmt (56b)

pt = Et [pt] + κEt [yt]− λEt [xat ] (56c)

where πt = pt − pt−1 and pt =
∫
pt (i) di. The appendix also derives the following solution to the

model:19

Xt ≡


xt

Et [Xt]
ECBt [Xt]

 (57a)

Xt = FXt−1 +Gut +HvCBt (57b)

pt = γ ′pXt (57c)

The term in vCBt remains because, unlike individual firms, the monetary authority is not atomistic,
so its errors of judgement do not “wash out” with the law of large numbers.

5.8 Simulations

Figure 8 plots impulse responses for the economy following a private noise shock to the monetary
authority’s signal of aggregate TFP. The central bank, erroneously thinking that the productivity
of the economy has improved, correspondingly believes that output will rise and prices will fall on
impact but then rise gradually back to steady-state. This combination of a (believed) sustained
positive output gap and positive future inflation causes the central bank to raise the interest rate
on impact. Firms do not observe anything in period 1, so prices do not change, but the increase in
the interest rate causes household demand to fall. In the second period, firms observe that period-1
output fell and so lower their prices. This substantially, but not entirely, acts to offset the negative
effect on output from the central bank’s error.

The error-induced recession then peters out over time. Interestingly, the authority subsequently
believes – incorrectly, but rationally conditional on their earlier noise shock – that a common noise
shock (measurement error on the part of the national statistical agency) is present in both signals
of output and the price level. Relative to their peak deviation, these induced errors of belief are
more persistent than the central bank’s belief about TFP (about which they experienced the error
in the first place).

5.9 Endogenous policy inertia

A key topic of debate in the understanding of central banks’ reaction functions is the structural
source of the observed inertia in policymaking. As mentioned above, when estimating reduced-form
Taylor rules for interest rate decision making, the data are best able to be fit with functional forms
that include an autoregressive coefficient on the interest rate. This has led many commentators to
conclude that monetary authorities proactively engage in interest rate smoothing.

19Note that the central bank’s beliefs, coming from a single information set, are subject to the law of iterated
expectations.
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Note: The top two panels show the actual path of the price level and the level of output, together
with the average of firms’ expectations and the central bank expectation of the same. The bottom
four panels show the path of firms’ average expectation and the central bank’s expectation about the
level of aggregate TFP (xat ), the household preference shock (xct) and the public measurement errors
in signals about output (xny

t ) and the price level (xnp

t ). The equivalent chart for the monetary shock
(xmt ) is not shown, but shows that the central bank observes it with certainty, while the average firm
believes it to be positive throughout (largely in mirror to firms’ average belief about xct).

Figure 8: Impulse responses following a transitory noise shock to the central bank’s signal
regarding aggregate TFP

A ‘gradualist’ approach to changing monetary policy has unquestionably been present on some
occasions. The most notable recent example, of course, occurred in the second half of 2014 and early
2015 when, contemplating an exit from holding their policy rates at, or near, their effective lower
bounds, communications from both the US Federal Reserve and the Bank of England explicitly
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emphasised that rate increases, when they began, would occur at a gradual and measured pace.
But although gradualism clearly describes central banks’ decision rules under some circumstances,
whether such an approach represents a defining attribute of monetary policymaking under all states
of the world remains a contentious issue.

Rudebusch (2002, 2006), in particular, argues that the appearance of inertial policymaking
suggested by estimated reduced-form rules is an illusion that, instead, reflects the fact that the true
drivers of policy choices (omitted variables in basic estimates of the policymaker’s decision rule)
are themselves persistent. Rudebusch argues that these “true drivers” may be proxied by assuming
persistence in the monetary shock process. Consequently, Hamilton, Pruitt, and Borger (2011) and
Coibion and Gorodnichenko (2012) have argued that if the ‘interest rate smoothing’ interpretation
is correct, inertial policy responses should be observable following any shock, while if central banks
do not actively engage in interest rate smoothing, policy inertia should only be observable following
a persistent monetary shock. Coibion and Gorodnichenko (2012) test this hypothesis, and find
considerable policy inertia following a wide sequence of identified non-monetary shocks. They
also document that the Taylor principle would have been satisfied in the Greenspan era of US
monetary policy under an assumption of interest rate smoothing, but not under the Rudebusch-
style assumption of persistent shocks. They subsequently conclude the data are strongly supportive
of the interest rate smoothing interpretation.

However, the model developed in this paper represents a source of policy inertia that emerges
regardless of the source of the underlying shock, despite the use of a simple Taylor-type rule that
responds only to expectations of next-period inflation and output, and which does not require
the Taylor principle to achieve nominal stability. Since the aggregate price and output levels are
themselves functions of the complete hierarchy of firms’ average beliefs about all underlying shocks
(and not just monetary shocks), the central bank’s decision must, in effect, be based on its own
views regarding that entire hierarchy of beliefs. Since both firms’ expectations and those of the
monetary authority are (optimally) recursive, they are necessarily slow to adjust given the noise
present in signals about the economy. Inertial policy therefore emerges endogenously, even following
perfectly transitory noise shocks that play no fundamental role in the economy.

6 Conclusion

This paper has developed a New Keynesian model that features a unique, globally-stable steady-
state equilibrium in inflation and, around that steady-state, a determinate price level, despite the
monetary authority targeting inflation. The central bank’s coefficient against inflation may violate
the Taylor principle without endangering the nominal stability of the economy (indeed, the model
admits the possibility of an interest rate peg). These results are striking, but emerge from an entirely
standard model with only three adjustments, all of which plausibly represent accurate descriptions
of reality:

• Instead of granting firms access to full information but preventing them from fully using it by
imposing that prices are sticky, I assume that prices are perfectly flexible but subject firms to
incomplete and heterogeneous information.

• Instead of having the monetary authority respond to current output and current inflation, I
assume that it responds to current output and expected next-period inflation.
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• I impose an upper bound for the responsiveness of the monetary authority to deviations of
inflation from target when in steady-state (although not necessarily when out of steady-state).

Within steady-state, the final assumption grants that the steady-state rate of inflation is
uniquely pinned down as a choice of the monetary authority. Out of steady-state (that is, when
the model is subject to shocks), the combination of flexible prices and a central bank that responds
only to expected future inflation removes all mention of previous-period prices when producing
current-period decisions. Together with incomplete information, under which all expectations (in-
cluding of future variables) become combinations of current and past observables, the current-period
price level becomes a function of only firms’ expectations regarding the hidden state of the economy,
and their beliefs about the beliefs of other firms. The price level of the economy is therefore de-
termined, up to an initial value.

The solution proceeds by specifying and solving the signal extraction problem of price-setting
firms. This uniquely pins down the process for expectation errors (including forecast errors) and so
removes the need to call on the assumptions of Blanchard and Kahn (1980). This, in turn, allows
the model to circumvent the critique of New Keynesian models by Cochrane (2011). Furthermore,
with the firms’ signal extraction problems fully specified, there remains no role for pure sunspot
shocks – shocks that are neither fundamental (not appearing directly in agents’ decision rules) nor
noise in the measurement error sense. Even if such shocks appear in all agents’ signals, the optimal
weight attributed to them in the Kalman filter is zero (as they carry no informational value).

Extending the model to incorporate incomplete information on the part of the central bank
allows it to further justify the absence of the Taylor principle by producing policy inertia in interest
rates, thereby providing a theoretical match to the arguments of Rudebusch (2002, 2006). The
extension also allows the model to confront the possibility of policymakers’ (rational) errors of
judgment that occur following a noise shock specific to the central bank.
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APPENDICES

A SOLVING INCOMPLETE INFORMATION MODELS

This appendix presents a proof of propositions 1 and 1, together with a brief discussion of imple-
menting the model numerically (e.g. in Matlab). Recall that the system may be summarised as:

zt = A0Et [zt] +A1Et [zt+1] +B0Et [xt] + C0xt (A.1a)

st (i) = M0zt +M1zt−1 +Nxt + vt (i) (A.1b)

xt = Pxt−1 + ut (A.1c)

and that, defining Xt ≡
[

xt

Et [Xt]

]
, the following solution is proposed:

zt = ΓXt (A.2a)

Xt = FXt−1 +Gut (A.2b)

The proof proceeds in three parts. First, I describe the agents’ optimal linear estimator of Xt

when observing signals that may be obtained with a lag (a modified Kalman filter described and
solved by Nimark, 2015). Second, given the agents’ Kalman filter, confirm the conjectured law of
motion for the hierarchy of agents’ average expectations. My presentation of this differs to past
examples such as Nimark (2008) or Melosi (2014) in that, conditional on period-t signals being based
only on the underlying state and not on zt, an explicit closed-form expression for F is derived, while
earlier work derived only implicit solutions that required iteration to obtain a fixed-point solution.
Finally, given the law of motion for the agents’ hierarchy of expectations, I note that Γ may then be
obtained through application of the method of undetermined coefficients. A discussion of numerical
implementation follows.

A.1 Agents’ optimal linear estimator

With the proposed solution of zt = ΓXt, the signal equation may be rewritten as

st (i) = (M0Γ +NS)Xt +M1ΓXt−1 + vt (i) (A.3)

The model presented here is not yet in standard state space form, however, because of the presence
of the lagged state in agents’ signal vector. The standard approach to such a scenario is typically
to define X̃t ≡

[
X ′t X ′t−1

]′
and then re-express everything in terms of X̃t. Such an approach is

mathematically correct, but doubles the size of the state vector, which may be troublesome when
simulating the result with finite computing resources.

Nimark (2015) derived a modified Kalman filter that permits the use of just Xt as the state
vector when agents observe signals that partially derive from Xt−1. I provide a sketch of Nimark’s
derivation here. To begin, I define the general notation that θerr

t|q (i) represents the error in agent
i’s period-q expectation regarding θt. In particular, the following will be used:

serr
t|t−1 (i) ≡ st (i)− Et−1 (i) [st (i)] : signal innovation

Xerr
t|t−1 (i) ≡ Xt − Et−1 (i) [Xt] : prior expectation error

Xerr
t|t (i) ≡ Xt − Et (i) [Xt] : contemporaneous expectation error
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I also define the variance-covariance of agents’ expectation errors as:

Vt|t−1 ≡ V ar
(
Xerr
t|t−1 (i)

)
Vt|t ≡ V ar

(
Xerr
t|t (i)

)
(A.4)

noting that Vt|t−1 and Vt|t are common to all agents as their problems are identical. The filter
updates in the standard way:

Et (i) [Xt] = Et−1 (i) [Xt] +Kts
err
t|t−1 (i) (A.5)

and as with a standard Kalman filter, the optimal Kalman gain is calculated as:

Kt = Cov(Xt, s
err
t|t−1 (i))

[
V ar

(
serr
t|t−1 (i)

)]−1
(A.6)

Since idiosyncratic shocks are transitory and mean zero, the signal innovation is given by

serr
t|t−1 (i) = (M0ΓF +M1Γ +NPS)︸ ︷︷ ︸

Λ

Xerr
t−1|t−1 (i) + (M0Γ +NS)G︸ ︷︷ ︸

Θ

ut + vt (i) (A.7)

and the variance-covariance of signal innovations will be:

V ar
(
serr
t|t−1 (i)

)
= ΛVt−1|t−1Λ′ + σ2

u ΘΘ′ + σ2
v I (A.8)

The covariance between the full state and the signal innovation is given by:

Cov
(
Xt, s

err
t|t−1 (i)

)
= Cov

(
FXt−1 +Gut,ΛXerr

t−1|t−1 (i) + Θut + vt (i)
)

= FCov
(
Xt−1, X

err
t−1|t−1 (i)

)
Λ′ + σ2

uGΘ′

= FCov
(
Xerr
t−1|t−1 (i) + Et−1 (i) [Xt−1] , Xerr

t−1|t−1 (i)
)

Λ′ + σ2
uGΘ′

= FCov
(
Xerr
t−1|t−1 (i) , Xerr

t−1|t−1 (i)
)

Λ′ + σ2
uGΘ′

= FVt−1|t−1Λ′ + σ2
uGΘ′ (A.9)

where the second equality uses the independence of idiosyncratic shocks, the third line uses the
definition of the expectation error and the fourth line is because Xerr

t−1|t−1 (i) and Et−1 (i) [Xt−1] will
be orthogonal to each other by the optimality of the filter.

Expanding the contemporaneous expectation error gives

Xerr
t|t (i) = Xerr

t|t−1 (i)−Kts
err
t|t−1 (i) (A.10)

or, rearranging slightly,

Xerr
t|t (i) +Kts

err
t|t−1 (i) = Xerr

t|t−1 (i) (A.11)

Taking the variance-covariance of both sides, and noting that serr
t|t−1 (i) and Xerr

t|t (i) must be ortho-
gonal by the optimality of the filter, we have

Vt|t +KtV ar
(
serr
t|t−1 (i)

)
K ′t = Vt|t−1 (A.12)

Plugging in the expression for Kt and rearranging then gives

Vt|t = Vt|t−1 − Cov(Xt, s
err
t|t−1 (i))

[
V ar

(
serr
t|t−1 (i)

)]−1
Cov(Xt, s

err
t|t−1 (i))′ (A.13)

Expanding the prior expectation error

Xerr
t|t−1 (i) = F

(
Xt−1 − Et−1 (i) [Xt−1]

)
+Gut (A.14)
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it immediately follows that the prior variance-covariance must be given by

Vt|t−1 = FVt−1|t−1F
′ + σ2

uGG
′ (A.15)

Gathering everything together, the filter updates as:

Kt =
(
FVt−1|t−1Λ′ + σ2

uGΘ′
) (

ΛVt−1|t−1Λ′ + σ2
u ΘΘ′ + σ2

v I
)−1

(A.16a)

Vt|t = FVt−1|t−1F
′ + σ2

uGG
′ −Kt

(
FVt−1|t−1Λ′ + σ2

uGΘ′
)′

(A.16b)

Provided that the largest eigenvalue of F lies within the unit circle, this will converge to a time-
invariant system:

K =
(
FV Λ′ + σ2

uGΘ′
) (

ΛV Λ′ + σ2
u ΘΘ′ + σ2

v I
)−1

(A.17a)

V = FV F ′ + σ2
uGG

′ −K
(
ΛV F ′ + σ2

uΘG′
)

(A.17b)

A.2 Deriving the law of motion for the full hierarchy

Define the matrices S and T to select xt and Et [Xt] from Xt respectively (that is, such that
SXt = xt and TXt = Et [Xt]):

S =
[
In 0n 0n 0n · · ·

]
(A.18a)

T =



0n In 0n 0n · · ·
0n 0n In 0n
0n 0n 0n In

0n 0n 0n 0n
. . .

... . . .


(A.18b)

Under a Kalman filter, firm j’s expectation regarding Xt updates as

Et (j) [Xt] = Et−1 (j) [Xt] +K
{
st (j)− Et−1 (j) [st (j)]

}
(A.19)

where K is a time-invariant projection matrix (the Kalman gain), common to all firms because their
problems are symmetric. Substituting in the firm’s signal equation and the law of motion for the
full hierarchy, we obtain

Et (j) [Xt] = FEt−1 (j) [Xt−1] +KΛ
(
Xt−1 − Et−1 (j) [Xt−1]

)
+K (Θut + vt (j)) (A.20)

where Λ = M0ΓF + M1Γ + NPS and Θ = (M0Γ +NS)G. Taking the average of this expression
gives

Et [Xt] = FEt−1 [Xt−1] +KΛ
(
Xt−1 − Et−1 [Xt−1]

)
+KMut

= FTXt−1 +KΛ (I − T )Xt−1 +KΘut (A.21)

The law of motion is thus demonstrated, with the matricies F and G satisfying

F =

 [
P 0n×∞

]
FT +KΛ (I − T )

 G =
[
I

KΘ

]
(A.22)
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Equation (A.22) only implicitly defines F , however, as it is internally recursive. To find an explicit
solution (conditional on K), I next expand the Λ and K matrices:

Λ =
[
Λ0 Λ1 Λ2 · · ·

]
(A.23a)

K =


K0

K1

K2
...

 (A.23b)

and partition F to be of the form

F =



P 0 0 0 · · ·
F21 F22 F23 F24 · · ·
F31 F32 F33 F34 · · ·
F41 F42 F43 F44 · · ·
...

...
...

... . . .


(A.24)

Next note that

FT =



0 P 0 0 · · ·
0 F21 F22 F23 · · ·
0 F31 F32 F33 · · ·
0 F41 F42 F43 · · ·
...

...
...

... . . .


(A.25)

and

Λ (I − T ) =
[
Λ0 (Λ1 − Λ0) (Λ2 − Λ1) (Λ3 − Λ2) · · ·

]
(A.26)

so that the bottom portion of F is given by


F21 F22 F23 · · ·
F31 F32 F33 · · ·
F41 F42 F43 · · ·
...

...
... . . .

 =


0 P 0 · · ·
0 F21 F22 · · ·
0 F31 F32 · · ·
...

...
... . . .

+


K0

[
Λ0 (Λ1 − Λ0) (Λ2 − Λ1) (Λ3 − Λ2) · · ·

]
K1

[
Λ0 (Λ1 − Λ0) (Λ2 − Λ1) (Λ3 − Λ2) · · ·

]
K2

[
Λ0 (Λ1 − Λ0) (Λ2 − Λ1) (Λ3 − Λ2) · · ·

]
...


(A.27)

Note that the F2∗ row is now fully determined. Given this, I can fill in the F3∗ row as
F21 F22 F23 · · ·
F31 F32 F33 · · ·
F41 F42 F43 · · ·
...

...
... . . .

 =


0 P 0 · · ·
0 K0Λ0 P +K0 (Λ1 − Λ0) · · ·
0 F31 F32 · · ·
...

...
... . . .

 (A.28)

+


K0

[
Λ0 (Λ1 − Λ0) (Λ2 − Λ1) (Λ3 − Λ2) · · ·

]
K1

[
Λ0 (Λ1 − Λ0) (Λ2 − Λ1) (Λ3 − Λ2) · · ·

]
K2

[
Λ0 (Λ1 − Λ0) (Λ2 − Λ1) (Λ3 − Λ2) · · ·

]
...

 (A.29)
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Filling in the F4∗ row then gives


F21 F22 F23 · · ·
F31 F32 F33 · · ·
F41 F42 F43 · · ·
...

...
... . . .

 =


0 P 0 · · ·
0 K0Λ0 P +K0 (Λ1 − Λ0) · · ·
0 K1Λ0 K0Λ0 +K1 (Λ1 − Λ0) · · ·
...

...
... . . .

 (A.30)

+


K0

[
Λ0 (Λ1 − Λ0) (Λ2 − Λ1) (Λ3 − Λ2) · · ·

]
K1

[
Λ0 (Λ1 − Λ0) (Λ2 − Λ1) (Λ3 − Λ2) · · ·

]
K2

[
Λ0 (Λ1 − Λ0) (Λ2 − Λ1) (Λ3 − Λ2) · · ·

]
...

 (A.31)

Recall that this is just the lower section of F and that the top “row” is already known. Continuing
this substitution and returning to the full F matrix, we obtain

F =



P 0 0 0 · · ·
0 P 0 0 · · ·
0 0 P 0 · · ·
0 0 0 P
...

...
... . . .


+



0 0 0 0 · · ·
K0Λ0 K0 (Λ1 − Λ0) K0 (Λ2 − Λ1) K0 (Λ3 − Λ2) · · ·

0 K0Λ0 K0 (Λ1 − Λ0) K0 (Λ2 − Λ1) · · ·
0 0 K0Λ0 K0 (Λ1 − Λ0) · · ·
...

...
...

... . . .



+



0 0 0 0 · · ·
0 0 0 0 · · ·

K1Λ0 K1 (Λ1 − Λ0) K1 (Λ2 − Λ1) K1 (Λ3 − Λ2) · · ·
0 K1Λ0 K1 (Λ1 − Λ0) K1 (Λ2 − Λ1) · · ·
...

...
...

... . . .



+



0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·

K2Λ0 K2 (Λ1 − Λ0) K2 (Λ2 − Λ1) K2 (Λ3 − Λ2) · · ·
...

...
...

... . . .


+ · · · (A.32)
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Which is

F = I∞ ⊗ P +
[

0n 0n · · ·
KΛ (I − T )

]
+



0n 0n 0n · · ·
0n 0n 0n · · ·
0n

KΛ (I − T )0n
...



+



0n 0n 0n 0n · · ·
0n 0n 0n 0n · · ·
0n 0n 0n 0n · · ·
0n 0n

KΛ (I − T )0n 0n
...

...


+ · · · (A.33)

= I∞ ⊗ P + T ′KΛ (I − T )

+
(
T ′
)2
KΛ (I − T )T

+
(
T ′
)3
KΛ (I − T )T 2

+ · · · (A.34)

which gives

F = I∞ ⊗ P + T ′
∞∑
k=0

(
T ′
)k
KΛ (I − T )T k (A.35)

or

F = I∞ ⊗ P + T ′Ω∗ where Ω∗ = T ′Ω∗T +KΛ (I − T ) (A.36)

A.3 Reduced form coefficients for endogenous variables

We have

zt = A0Et [zt] +A1Et [zt+1] +B0Et [xt] + C0xt (A.37)

and propose that

zt = ΓXt (A.38a)

Xt = FXt−1 +Gut (A.38b)

Substituting in the proposed solution gives

ΓXt = A0Et [ΓXt] +A1Et [Γ (FXt +Gut+1)] +B0Et [SXt] + C0SXt (A.39)

or

ΓXt = A0ΓTXt +A1ΓFTXt +B0STXt + C0SXt (A.40)

from which we can immediately read that Γ must satisfy

Γ = A0ΓT +A1ΓFT +B0ST + C0S (A.41)
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If zt is scalar (so thatA0 andA1 are both scalars), this amounts to a requirement that (I −A0T −A1FT )
be invertible:

Γ = (B0ST + C0S) (I −A0T −A1FT )−1 (A.42)

which in turn requires that ρ {A0I +A1F} < 1 where ρ {?} is the spectral radius (that is, the largest
eigenvalue in absolute value) of the matrix ?. If the equilibrium conditions also require terms in
AqEt [zt+q] where q > 1, then equation (A.41) naturally extends to

Γ =

A0Γ +
∞∑
q=1

AqΓF q
T +B0ST + C0S (A.43)

A.4 Implementing the solution

Finding the solution to the model involves (i) defining an upper bound, k∗, for the number of higher-
order expectations to simulate; and (ii) finding the simultaneous fixed point of three systems:

1. The Kalman Filter

2. The Law of Motion for the hierarchy of expectations

3. The endogenous aggregate variables of the economy

This might, in principle, be obtained in a variety of different ways. For example, the simplest
implementation is perhaps
repeat

Update the Kalman Filter by one step
Update the Law of Motion by one step
Update the reduced-form coefficients for the aggregate variables by one step

until all three converge

However, the size of the full state vector (the hierarchy of expectations regarding the underlying
state) can be arbitrarily large in models of heterogeneous information and problems of numerical
instability – the accumulation and magnification of round-off errors that must necessarily emerge
from floating-point operations on computers – can emerge when iterating a large system over many
steps. Large-state Kalman filters are particularly prone to such problems, where issues typically
first appear as a failure of symmetry or positive-definiteness in the variance-covariance matrices of
the Ricatti equation (Grewel and Andrews, 2008).

To minimise these issues (they can never be removed entirely), it is best to minimise the number
of iterations through the Kalman filter. Since the need to obtain a fixed point of the economy is
conditional on the Law of Motion for the full state, and the Law of Motion is conditional on the
Kalman Filter, a superior algorithm is
repeat

Update the Kalman Filter by one step
Obtain the corresponding fixed point of the Law of Motion
Obtain the corresponding fixed point of the Economy

until the Kalman Filter converges
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B KEY DERIVATIONS WITHIN A NEW KEYNESIAN
THEORY OF THE PRICE LEVEL

B.1 Producing the linearised model

Equations presented here drop any constant terms for clarity.

The household’s Euler equation (combined with market clearing) is given by

yt = EΩ
t [yt+1]− σ

(
it − EΩ

t [pt+1] + pt
)

+ σ
(
xct − EΩ

t

[
xct+1

])
(B.1)

The monetary authority is assumed to have a Taylor-style log-linear representation:

it = φyE
Ω
t [yt+1] + φπ

(
EΩ
t [pt+1]− pt

)
+ xmt (B.2)

Combining these two equations (and using the household’s knowledge of the process for xt) gives

yt = (1− σφy)Et [yt+1] + σ (1− φπ) (Et [pt+1]− pt) + µ′yxt (B.3a)

µ′y = σ
([

1 −1
]
−
[
1 0

]
P
)

(B.3b)

Define δ ≡ 1− σφy. This can then be rewritten as

yt = σ (1− φπ)

(1− δ)
∞∑
q=0

δqEΩ
t [pt+1+q]− pt

+ µ′y (I − δP )−1 xt (B.4)

A finite level of output therefore requires that the household expects the price level to not grow too
quickly. As the model will be shown to fit the requirements of proposition 1, the solution will be
of the form pt = γ ′pXt with Xt = FXt−1 + Gut. If I define ρ {F} to be the absolute value of the
largest eigenvalue of F , a finite value of yt will therefore require that δρ {F} < 1.

Firms are subject to incomplete information. The signals observed by firms will be detailed below.

Marginal costs are given by:

mct (j) = wt + vwt (j)− pt + ηyt (j) (B.5)

Household labour supply plus aggregate production (from market clearing):

wt − pt =
( 1
σ

+ 1 + η

ψ

)
yt (B.6)

Individual product demand:

yt (j) = yt + vyt (j)− ε (pt (j)− pt) (B.7)

Combining the last three gives a fuller expression for marginal costs:

mct (j) =
(
η + 1

σ
+ 1 + η

ψ

)
yt︸ ︷︷ ︸

mct

+ δ′mcvt (j)

︸ ︷︷ ︸....
mct(j)

− ηε (pt (j)− pt) (B.8a)

where

δ′mc =
[
− (1 + η) 1 η

]
(B.8b)
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The aggregate price level is the average firm’s price, which is given by20

pt = Et [pt] + 1
1 + ηε

Et [mct] (B.9)

Combining these two equations then gives (note, too, thatEt
[
EΩ
t [·]

]
= Et [·], since It (i) ⊂ Ωt ∀i, t):

pt = Et [pt] +
( 1

1 + ηε

)(
η + 1

σ
+ 1 + η

ψ

)
︸ ︷︷ ︸

κ

Et [yt] (B.10)

In equilibrium, I can substitute (B.4) into (B.10) and rearrange to obtain

pt = (1− ξ)Et [pt] + ξ (1− δ)
∞∑
q=0

δqEt [pt+q+1] + b′pEt [xt] (B.11a)

pt (i) = (1− ξ)Et (i) [pt] + ξ (1− δ)
∞∑
q=0

δqEt (i) [pt+q+1] + b′pEt (i) [xt] (B.11b)

where

ξ =
( 1

1 + ηε

)(
η + 1

σ
+ 1 + η

ψ

)
σ (1− φπ) (B.11c)

b′p =
( 1

1 + ηε

)(
η + 1

σ
+ 1 + η

ψ

)
µ′y (I − δP )−1 (B.11d)

The equilibrium condition (41a) corresponds to equation (3a) in the definition of an economy
with incomplete and heterogeneous information.

B.2 Solving the model

As the model meets the definition of a linear economy with dispersed information, proposition 1
applies. The matricies of the dispersed-information economy definition (1) are here given by:

For the competitive equilibrium condition (3a)

A0 = 1− ξ (B.12a)

Aq = ξ (1− δ) δq ∀q ≥ 1 (B.12b)

B0 = b′p (B.12c)

C0 = 0 (B.12d)

For the law of motion for the underlying state (3b)

P = ρ I4 (B.12e)

For firms’ signal equations (3e)

M0 = 0 (B.12f)

M1 =
[
γ ′y

γ ′p

]
(B.12g)

N =
[
0 0 1 0
0 0 0 1

]
(B.12h)

20Strictly, this requires that
∫
Et (i) [vt (i)] di = 0, but since I have already assumed that idiosyncratic shocks

are transitory, this may be obtained without loss of generality through a simple timing adjustment to suppose that
vt−1 (i) enters firms’ signal equation in place of vt (i).
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C IMPULSE RESPONSES FOR OTHER SHOCKS

The main text provided charts of impulse response functions following a monetary shock (xmt ) and a
common noise shock to firms’ signals about the aggregate price level (xnpt ). I here present – without
comment – the corresponding charts for a shock to household rates of time preference (xct) and a
common noise shock to firms’ signals about the aggregate level of output.
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The price level and firms’ average forecasts
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Note: The top two panels show the actual path, the path of firms’ average contemporaneous belief
and the sequence of firms’ average 4-period-ahead forecasts for each of the level of output and the
price level. The next two panels show the sequence of firms’ average forecast errors for the same.
The bottom four panels show the hierarchies of firms’ expectations about each of the four aggregate
shocks.

Figure 9: Impulse responses following a shock to household preferences49



The price level and firms’ average forecasts
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Note: The top two panels show the actual path, the path of firms’ average contemporaneous belief
and the sequence of firms’ average 4-period-ahead forecasts for each of the level of output and the
price level. The next two panels show the sequence of firms’ average forecast errors for the same.
The bottom four panels show the hierarchies of firms’ expectations about each of the four aggregate
shocks.

Figure 10: Impulse responses following a common noise shock to firms’ signals of the output
level
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D EXTENDING THE MODEL TO INCOMPLETE CENTRAL
BANK INFORMATION

D.1 Producing the linear three-equation version of the model

The linearisation of the household Euler equation remains unchanged from the baseline model, while
that for the monetary authority is altered only to the extent that its expectations are conditioned
on an incomplete information set. The expression for the aggregate price level has an extra term,
however, to include firms’ expectations regarding the current level of aggregate TFP.

yt = EΩ
t [yt+1]− σ

(
it − EΩ

t [pt+1] + pt
)

+ σ
(
xct − EΩ

t

[
xct+1

])
(D.1a)

it = φπE
CB
t [pt+1 − pt] + φyE

CB
t [yt+1] + xmt (D.1b)

pt = Et [pt] + κEt [yt]− λEt [at] (D.1c)

where πt = pt − pt−1 and pt =
∫
pt (i) di. To derive the last equation, first note that marginal costs

are given by:

mct (i) = wt + vwt (i)− pt + ηyt (i)− (1 + η) (at + vat (i)) (D.2)

Household labour supply plus market clearing:

wt − pt = 1
σ
yt + 1

ψ
ht (D.3)

Aggregate output (note that the distortion term drops out in a log-linearisation):

yt = at +
( 1

1 + η

)
ht (D.4)

Individual product demand:

yt (j) = yt + vyt (j)− ε (pt (j)− pt) (D.5)

Combining these last four gives a fuller expression for marginal costs:

mct (i) =
(
η + 1

σ
+ 1 + η

ψ

)
yt − (1 + η)

(
1 + 1

ψ

)
at︸ ︷︷ ︸

mct

+ δ′mcvt (i)

︸ ︷︷ ︸....
mct(i)

− ηε (pt (i)− pt) (D.6a)

where

δ′mc =
[
− (1 + η) 1 η

]
(D.6b)

Substituting this into firm i’s pricing decision, gathering terms and dropping the terms in vt (i) (on
the basis that they are unknowable when the firm sets its period-t price) gives:

pt (i) = Et (i) [pt] +
( 1

1 + ηε

)
Et (i) [mct] (D.7)

or

pt = Et [pt] + κEt [yt]− λEt [at] (D.8a)

κ =
( 1

1 + ηε

)( 1
σ

+ η + 1 + η

ψ

)
(D.8b)

λ =
( 1

1 + ηε

)(
1 + η + 1 + η

ψ

)
(D.8c)
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D.2 Solving the model

I have the following linear model

yt = EΩ
t [yt+1]− σ

(
it − EΩ

t [pt+1] + pt
)

+ σ
(
xct − EΩ

t

[
xct+1

])
(D.9a)

it = φπE
CB
t [pt+1 − pt] + φyE

CB
t [yt+1] + xmt (D.9b)

pt = Et [pt] + κEt [yt]− λEt [at] (D.9c)

and the proposed solution of the model is

Xt ≡


xt

Et [Xt]
ECBt [Xt]

 (D.10a)

Xt = FXt−1 +Gut +HvCBt (D.10b)

pt = γ ′pXt (D.10c)

yt = γ ′yXt (D.10d)

it = γ ′iXt (D.10e)

Obtaining the reduced-form coefficients

To obtain the γ∗ coefficients, substitute the proposed solution into (D.9) to obtain

yt = γ ′yFXt − σ
(
γ ′iXt − γ ′p (F − I)Xt

)
+ σ

[
0 0 1 0 0 0

]
(I − P )SXt (D.11a)

it = φπγ
′
p (F − I)TCBXt + φyγ

′
yFT

CBXt +
[
0 0 0 1 0 0

]
SXt (D.11b)

pt = γ ′pT
PXt + κγ ′yT

PXt − λ
[
1 0 0 0 0 0

]
STPXt (D.11c)

or

γ ′y = γ ′yF − σ
(
γ ′i − γ ′p (F − I)

)
+ σ

[
0 0 1 0 0 0

]
(I − P )S (D.12a)

γ ′i = φπγ
′
p (F − I)TCB + φyγ

′
yFT

CB +
[
0 0 0 1 0 0

]
S (D.12b)

γ ′p = γ ′pT
P + κγ ′yT

P − λ
[
1 0 0 0 0 0

]
STP (D.12c)

Which represent three equations in three unknowns. Substituting the interest rate into the Euler
equation gives

γ ′y =


σγ ′p (F − I)

(
I − φπTCB

)
−σ

[
0 0 0 1 0 0

]
S

+σ
[
0 0 1 0 0 0

]
(I − P )S

(I − F + σφyFT
CB
)−1

(D.13)

Defining J ≡ F
(
I − σφyTCB

)
, I can substitute this into the price equation to give

γ ′p

(
I − TP

)
= κ


σγ ′p (F − I)

(
I − φπTCB

)
−σ

[
0 0 0 1 0 0

]
S

+σ
[
0 0 1 0 0 0

]
(I − P )S

 (I − J)−1 TP

− λ
[
1 0 0 0 0 0

]
STP (D.14)
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or

γ ′p =

 κσ

 [
0 0 1 0 0 0

]
(I − P )

−
[
0 0 0 1 0 0

] S (I − J)−1

−λ
[
1 0 0 0 0 0

]
S

TP (I −RTP)−1
(D.15a)

where

R = I − κσ (I − F )
(
I − φπTCB

)
(I − J)−1 (D.15b)

Expressions for γy and γi then immediately follow by substituting this back into (D.13) and (D.12b).

Ensuring stability

Inspecting equation (D.15), it is clear that the solution will be well defined (that is, will lead to a
finite expression for the price level) when

ρ {F} < 1 to ensure the stability of Xt (D.16a)

ρ {J} < 1 to ensure the invertibility of I − J (D.16b)

ρ {R} < 1 to ensure the invertibility of I −RTP (D.16c)

Analogously to the baseline model, condition (D.16b) relates to stability in expectations of future
prices, while condition (D.16c) relates to stability in the hierarchy of expectations.

Firms’ signal extraction problem

Firms’ optimal linear estimator remains unchanged from that in the baseline model, with two
exceptions:

• The underlying state, xt, has been expanded to include the stochastic TFP.

• Firms’ signal vectors, st (i), have been expanded to include firm-specific signals of TFP.

The derivation of the baseline estimator in appendix A.1 abstracts from the exact content of xt
and st (i), and so remains unchanged for firms in this extension, except to note that

M0 = 0 (D.17a)

M1 =


γ ′y

γ ′p[
1 0 0 0 0 0

]
S

 (D.17b)

N =


0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 (D.17c)

O =


1 0 0
0 1 0
0 0 1

 (D.17d)

I also denote the consequent time-invariant Kalman gain and error variance matrices as KP and
V P to emphasise that they are those for price-setting firms.
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The monetary authority’s signal extraction problem

The monetary authority’s signal extraction problem is entirely parallel to that of each firm. Given
the process for evolution of an unknown state:

Xt = FXt−1 +Gut (D.18)

and a signal equation of the general form

sCBt = DXt−1 +NCBxt + ZvCBt (D.19)

the monetary authority’s optimal Kalman filter will be the same as that derived in A.1 for individual
firms, except to set M0 = 0 (as for firms) and to replace M1Γ with D, N with NCB and O with Z.

D =


γ ′y

γ ′p[
1 0 0 0 0 0

]
S

01×∞

 (D.20a)

NCB =


0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0

 (D.20b)

Z =


1 0 0
0 1 0
0 0 1
0 0 0

 (D.20c)

I denote the consequent time-invariant Kalman gain and error variance matrices as KCB and V CB

to distinguish them from the KP and V P for individual firms.

The law of motion for the full hierarchy of expectations

Recall that the full hierarchy of expectations is given by

Xt ≡


xt

Et [Xt]

ECBt

[
xt

Et [Xt]

]
 (D.21)

with S, TP and TCB
∗ defined to extract each component respectively (that is, SXt = x, while

TPXt = Et [Xt] and TCB
∗
Xt = ECBt

[
xt

Et [Xt]

]
). Note, too, that since the central bank is subject

to the law of iterated expectations (LIE), then ECBt [Xt] =
[
TCB

∗

TCB
∗

]
Xt. As such, I further define

T TB ≡
[
TCB

∗

TCB
∗

]
to select this.

Firms
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Since firms’ signal extraction problem remains unchanged, then as shown above in appendix
A.2, the evolution of firms’ individual expectations will continue to be expressed as

Et (i) [Xt] = FEt−1 (i) [Xt−1] +KPΛP
(
Xt−1 − Et−1 (i) [Xt−1]

)
+KP

(
ΘPut +Ovt (i)

)
(D.22)

where ΛP = M0ΓF + M1Γ + NPS and ΘP = M0ΓG + NQ. Firms’ average expectations will
therefore continue to be

Et [Xt] = FTPXt−1 +KPΛP
(
I − TP

)
Xt−1 +KPΘPut (D.23)

The monetary authority

The surprise in the central bank’s signal is given by:

sCBt − ECBt−1

[
sCBt

]
= ΛCBXCB:err

t−1|t−1 + ΘCBut + ZvCBt (D.24)

where ΛCB = D +NCBPS and ΘCB = NCBQ.

ECBt [Xt] = ECBt−1 [Xt] +KCB
{

ΛCB
(
Xt−1 − ECBt−1 [Xt−1]

)
+ ΘCBut + ZvCBt

}
=
(
FTCB +KCBΛCB

(
I − TCB

))
Xt−1 +KCBΘCBut +KCBZvCBt (D.25)

The law of motion

The law of motion is therefore demonstrated, with the matricies F , G and H satisfying

F =


[
P 0n×∞

]
FTP +KPΛP

(
I − TP

)
TCB

∗
(
FTCB +KCBΛCB

(
I − TCB

))
 G =


Q

KPΘP

TCB
∗
KCBΘCB

 H =


0
0

TCB
∗
KCBZ


(D.26)
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